Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.
Сегодня мы расскажем об одной из основных геометрических фигур – ПРЯМОУГОЛЬНИКЕ.
Название это весьма говорящее, и в нем скрыто официальное определение.
Прямоугольник – это четырехугольник, у которого все углы прямые, то есть равны 90 градусам.
Впервые описание этой фигуры встречается еще в Древнем Египте. Но в те времена все геометрические правила давались как неопровержимые истины, не предоставляя доказательств.
Более правильный подход появился в Древней Греции. И естественно, автором стал самый знаменитый математик той эпохи — Евклид. А прямоугольник, как и многие другие фигуры и термины, был подробно описан в его произведении «Начала».
Видео:№400. Докажите, что если в четырехугольнике все углы прямые, то четырехугольник — прямоугольник.Скачать
Прямоугольник — это.
Все тот же Евклид разделил все четырехугольники на два вида – параллелограммы (что это?) и трапеции (что это?).
У первых противоположные стороны равны и параллельны, а у вторых параллельна только одна пара сторон, и они при этом не равны.
То есть выглядит это так:
Так вот, прямоугольник в данном случае является частным случаем параллелограмма.
У этой фигуры противоположные стороны параллельны. Это первое условие по Евклиду. И к тому же они равны, что является условием номер два.
У прямоугольника есть и собственный частный случай. Когда равны не только противоположные стороны, а все. И как нетрудно догадаться, фигура эта называется квадрат.
Ну, и логично предположить, что квадрат (как и сам прямоугольник) является частным случаем параллелограмма.
Видео:№410. Является ли четырехугольник квадратом, если его диагонали: а) равны и взаимноСкачать
Признаки прямоугольника
Признаки геометрической фигуры – это совокупность отличий, по которым ее можно выделить среди других.
В случае с прямоугольником их всего три:
- Если один из углов параллелограмма прямой, то данный параллелограмм является прямоугольником.
- Если три угла четырехугольника являются прямыми, то перед нами опять же прямоугольник. При этом нет необходимости доказывать, что четырехугольник является параллелограммом. Это промежуточное звено становится верно само по себе.
- Если диагонали параллелограмма равны между собой, то фигура точно является прямоугольником.
» alt=»»>
Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
Диагонали прямоугольника
Как мы уже упомянули выше, диагонали прямоугольника (отрезки, соединяющие его противоположные углы) равны между собой.
Доказать это можно с помощью известной теоремы Пифагора. Она гласит, что «Сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы».
В нашем случае гипотенузой является диагональ прямоугольника, которая делит его на два равных прямоугольных треугольника. И теорема Пифагора выглядит следующим образом:
Видео:Прямоугольник. 8 класс.Скачать
Свойства прямоугольника
К свойствам прямоугольника относятся следующие утверждения:
- Прямоугольник является параллелограммом, а значит имеет все присущие ему свойства.
- У прямоугольника равны противоположные стороны.
Видео:Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать
Периметр и площадь
Для того чтобы определить периметр прямоугольника, надо просто сложить длины всех его четырех сторон.
Но с учетом того, что попарно они равны, то конечная формула может выглядеть более просто:
Площадь прямоугольника вычисляется также весьма просто. Надо лишь перемножить две его стороны:
К слову, это не единственная формула для вычисления площади. Площадь также можно получить, имея значение периметра фигуры или длину его диагонали. Но эти формулы гораздо сложнее.
Вот и все, что мы хотели рассказать о геометрической фигуре ПРЯМОУГОЛЬНИК. До новых встреч на страницах нашего блога.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (5)
Главная основа геометрии — это все же треугольник. Через него можно построить любую фигуру и доказать любую теорему.
Прямоугольник отличается от квадрата, этому учат в школе в младших классах. Квадрат — это одинаковая длина соединяющих углов, если я правильно выражаюсь, а прямоугольник формы может быть: телефон, звуковые колонки, паспорт и прочее.
Не согласен с утверждением, что раз один угол прямой, то перед нами точно прямоугольник, всё же прямоугольник — это когда все противоположные стороны параллельны друг другу, а если только один угол прямой, то там и трапеция может быть.
Я бы сказала, что прямоугольник — это основа архитектуры. Все здания так или иначе используют эту фигуру в своем дизайне.
Вот за что я люблю прямоугольники, так за то, что площадь его легко найти, да и периметр, вот с трапецией сложнее, увы, но те же земельные участки больше трапеции, отсюда и земельные споры.
Видео:8 класс, 4 урок, ПараллелограммСкачать
Если в четырехугольнике все углы равны
Если в четырехугольнике все углы равны, то что можно сказать о таком четырехугольнике?
(5-й признак прямоугольника)
Если в четырехугольнике все углы равны, то этот четырехугольник является прямоугольником.
2) Если у четырехугольника три угла прямые, то этот четырехугольник — прямоугольник (по 4-му признаку).
Значит, ABCD — прямоугольник.
Что и требовалось доказать.
Если утверждение о сумме углов выпуклого четырехугольника к началу изучения темы «Прямоугольник» еще не было доказано, это можно сделать непосредственно в доказательстве 5-го признака прямоугольника.
Тогда 1-й пункт принимает такой вид:
1) Проведем в четырехугольнике ABCD диагональ AC.
Она разбивает четырехугольник на треугольники
∠BAC+∠ABC+∠BCA=180º и ∠ACD+∠CDA+∠DAC=180º.
Сумма углов четырехугольника ABCD равна сумме углов этих треугольников:
По условию, в четырехугольнике ABCD все углы равны. Поэтому ∠A=∠B=∠C=∠D=360º:4=90º.
Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать
Прямоугольник
Частным видом параллелограмма является прямоугольник.
Прямоугольником называют параллелограмм, у которого все углы прямые |
ABCD — прямоугольник.
Особое свойство прямоугольника
Диагонали прямоугольника равны |
Доказательство
Дано: ABCD — прямоугольник
Доказать: AC = DB
Доказательство:
Рассмотрим ABD иACB: ABCD — прямоугольник, А и B — прямые, ABD иACB — прямоугольные. AD = CB (по свойству параллелограмма). AB — общий катет, ABD =ACB (по двум катетам). А в равных треугольниках против соответственно равных углов лежат равные стороны, значит, AC = DB, что и требовалось доказать.
Теорема
Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник
Доказательство
Дано: ABCD — параллелограмм, AC = DB
Доказать: ABCD — прямоугольник
Доказательство:
Рассмотрим ABD иACB:
AC = DB (по условию), AD = BC (по свойству параллелограмма), AB — общая, ABD =ACB (по трем сторонам). А в равных треугольниках против соответственно равных сторон лежат равные углы, A = B. А в параллелограмме противоположные углы равны, значит A = C и В = D, A = В = C = D (1). A + В + C + D = 360 0 (2)(т.к. параллелограмм выпуклый четырёхугольник). Следовательно, из (2), учитывая (1), получаем, что A = В = C = D = 90 0 , ABCD — прямоугольник, что и требовалось доказать.
Теорема
Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник |
Доказательство
Дано: ABCD — параллелограмм, A = 90 0
Доказать: ABCD — прямоугольник
Доказательство:
Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180 0 , т.е. A + В = 180 0 , В = 180 0 — A = 180 0 — 90 0 = 90 0
Противолежащие углы параллелограмма равны, A = C = 90 0 и В = D = 90 0
Итак: ABCD — параллелограмм (по условию), и все его углы прямые (по доказанному выше), ABCD — прямоугольник (по определению), что и требовалось доказать.
Две теоремы, доказанные выше, называют признаками прямоугольника.
Поделись с друзьями в социальных сетях:
🎦 Видео
8 класс, 3 урок, ЧетырехугольникСкачать
Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
Геометрия 8 класс (Урок№6 - Прямоугольник. Ромб. Квадрат.)Скачать
Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать
8 класс, 7 урок, ПрямоугольникСкачать
№1080. Докажите, что любой правильный четырехугольник является квадратом.Скачать
Прямоугольник. Что такое прямоугольник?Скачать
8 класс, 8 урок, Ромб и квадратСкачать
Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать
119 Если диагонали прямоугольника равны, то все его углы прямые (198)Скачать
Математика 5 класс (Урок№29 - Четырёхугольники.)Скачать
Если в четырёхугольник можно вписать окружностьСкачать
8 класс, 5 урок, Признаки параллелограммаСкачать