Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Содержание
  1. Всегда ли многоугольник, у которого серединные перпендикуляры ко всем сторонам пересекаются в одной точке, является правильным? Почему?
  2. Ваш ответ
  3. решение вопроса
  4. Похожие вопросы
  5. Четырехугольник и его элементы — определение и вычисление с доказательствами и примерами решения
  6. Четырехугольник и его элементы
  7. Параллелограмм. Свойства параллелограмма
  8. Пример №1
  9. Пример №2
  10. Признаки параллелограмма
  11. Пример №3
  12. Необходимо и достаточно
  13. Прямоугольник
  14. Ромб
  15. Квадрат
  16. Средняя линия треугольника
  17. Пример №4
  18. Трапеция
  19. Пример №5 (свойства равнобокой трапеции)
  20. Центральные и вписанные углы
  21. Пример №6 (свойство угла между касательной и хордой).
  22. Пример №7
  23. Описанная и вписанная окружности четырехугольника
  24. Пример №8 (признак принадлежности четырех точек одной окружности).
  25. Вписанные и описанные четырехугольники
  26. Теорема Фалеса
  27. Пример №9
  28. Четырехугольники
  29. теория по математике 📈 планиметрия
  30. Выпуклый четырехугольник
  31. Виды и свойства выпуклых четырехугольников
  32. Прямоугольник
  33. Квадрат
  34. Параллелограмм
  35. Трапеция
  36. Виды трапеций
  37. Средняя линия трапеции
  38. 🔥 Видео

Видео:Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||Скачать

Замечательные точки треугольника | Ботай со мной #030 | Борис Трушин ||

Всегда ли многоугольник, у которого серединные перпендикуляры ко всем сторонам пересекаются в одной точке, является правильным? Почему?

Видео:Геометрия 11 класс. Вписанный четырехугольникСкачать

Геометрия 11 класс. Вписанный четырехугольник

Ваш ответ

Видео:Почему высоты треугольника пересекаются в одной точке?Скачать

Почему высоты треугольника пересекаются в одной точке?

решение вопроса

Видео:Окружность вписанная в треугольник и описанная около треугольника.Скачать

Окружность вписанная в треугольник и описанная около треугольника.

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,739
  • разное 16,824

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Геометрия 8 класс (Урок№30 - Свойство серединного перпендикуляра.)Скачать

Геометрия 8 класс (Урок№30 - Свойство серединного перпендикуляра.)

Четырехугольник и его элементы — определение и вычисление с доказательствами и примерами решения

Содержание:

Четырехугольником называют фигуру, состоящую из четырех точек и четырех последовательно соединяющих их отрезков.

Никакие три из этих точек не должны лежать на одной прямой, а соединяющие их отрезки не должны иметь никаких других общих точек, кроме данных.

Любой четырехугольник ограничивает некоторую часть плоскости, являющуюся внутренней областью четырехугольника.

На рисунке 1 изображен четырехугольник Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Вершины четырехугольника, являющиеся концами его стороны, называют соседними, несоседние вершины называют противолежащими. На рисунке 1 вершины Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— соседние, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— противолежащие.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Стороны четырехугольника, имеющие общую вершину, называют соседними, а не имеющие общей вершины — противолежащими. На рис. 1 стороны Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— соседние, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— противолежащие.

Сумму длин всех сторон четырехугольника называют его периметром. Периметр обозначают буквой Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеНапример, периметр четырехугольника Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеможно обозначить как Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Отрезки, соединяющие противолежащие вершины четырехугольника, называют диагоналями четырехугольника.

На рисунке 2 отрезки Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— диагонали четырехугольника Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеКаждый четырехугольник имеет две диагонали.

Углами четырехугольника Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеназывают углы Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(рис. 1). Углы четырехугольника называют противолежащими, если их вершины — противолежащие вершины четырехугольника, и соседними, если их вершины — соседние вершины четырехугольника. На рисунке 1 углы Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— противолежащие, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— соседние.

Один из углов четырехугольника может быть больше развернутого угла. Например, на рисунке 3 в четырехугольнике Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеугол Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкебольше развернутого. Такой четырехугольник называют невыпуклым. Если все углы четырехугольника меньше 180°, его называют выпуклым. Диагонали выпуклого четырехугольника пересекаются (рис. 2), а невыпуклого не пересекаются (рис. 4).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Теорема (о сумме углов четырехугольника). Сумма углов четырехугольника равна 360°.

Доказательство:

Пусть Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— некоторый четырехугольник. Проведем в нем диагональ Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(рис. 5). Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеЧто можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеУчитывая, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(как сумма углов Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(как сумма углов Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкебудем иметь: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеЧто можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Пример:

Найдите углы четырехугольника, если их градусные меры относятся как 3 : 10 : 4 : 1. Выпуклым или невыпуклым является этот четырехугольник?

Решение:

Пусть углы четырехугольника равны Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеЧто можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеИмеем уравнение Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеоткуда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеСледовательно, углы четырехугольника равны Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеТак как один из углов четырехугольника больше 180°, то этот четырехугольник — невыпуклый.

Ответ. 60°, 200°, 80°, 20°; невыпуклый.

Видео:8 класс, 36 урок, Свойства серединного перпендикуляра к отрезкуСкачать

8 класс, 36 урок, Свойства серединного перпендикуляра к отрезку

Четырехугольник и его элементы

На рисунке 1 отрезки АВ и ВС имеют только одну общую точку В, которая является концом каждого из них. Такие отрезки называют соседними. На рисунке 2 каждые два отрезка являются соседними.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Отрезки АВ и CD на рисунке 3 не являются соседними.
Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Рассмотрим фигуру, состоящую из четырех точек А, В, С, D и четырех отрезков АВ, ВС, CD, DA таких, что никакие два соседних отрезка не лежат на одной прямой и никакие два несоседних отрезка не имеют общих точек (рис. 4, а).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Фигура, образованная этими отрезками, ограничивает часть плоскости, выделенную на рисунке 4, б зеленым цветом. Эту часть плоскости вместе с отрезками АВ, ВС, CD и DA называют четырехугольником. Точки А, В, С, D называют вершинами четырехугольника, а отрезки АВ, ВС, CD, DA — сторонами четырехугольника.

На рисунке 5 изображены фигуры, состоящие из четырех отрезков АВ, ВС, CD, DA и части плоскости, которую они ограничивают. Однако эти фигуры не являются четырехугольниками. Поясните почему.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Стороны четырехугольника, являющиеся соседними отрезками, называют соседними сторонами четырехугольника. Вершины, являющиеся концами одной стороны, называют соседними вершинами многоугольника. Стороны, не являющиеся соседними, называют противолежащими сторонами четырехугольника. Несоседние вершины называют противолежащими вершинами четырехугольника.

На рисунке 6 изображен четырехугольник, в котором, например, стороны MQ и MN являются соседними, а стороны NP и MQ — противолежащими. Вершины Q и Р — соседние, а вершины М и Р — противолежащие.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Четырехугольник называют и обозначают по его вершинам. Например, на рисунке 4, б изображен четырехугольник ABCD, а на рисунке 6 — четырехугольник MNPQ. В обозначении четырехугольника буквы, стоящие рядом, соответствуют соседним вершинам четырехугольника. Например, четырехугольник, изображенный на рисунке 6, можно обозначить еще и так: PQMN, или MQPN, или NPQM и т. д.

Сумму длин всех сторон четырехугольника называют периметром четырехугольника.

Отрезок, соединяющий противолежащие вершины четырехугольника, называют диагональю. На рисунке 7 отрезки АС и BD — диагонали четырехугольника АВСD.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Углы ABC, BCD, CDA, DAB (рис. 8) называют углами четырехугольника ABCD. В этом четырехугольнике каждый из них меньше развернутого угла. Такой четырехугольник называют выпуклым. Однако существуют четырехугольники, в которых не все углы меньше развернутого. Например, на рисунке 9 угол В четырехугольника ABCD больше 180°. Такой четырехугольник называют невыпуклым 1 .

Углы АВС и ADC называют противолежащими углами четырехугольника ABCD (рис. 8, 9). Также противолежащими являются углы BAD и BCD.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Теорема 1.1. Сумма углов четырехугольника равна 360°.

Доказательство. Проведем в четырехугольнике диагональ, разбивающую его на два треугольника. Например, на рисунке 10

1 Более подробно с понятием «выпуклость» вы ознакомитесь в п. 19.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

это диагональ BD. Тогда сумма углов четырехугольника ABCD равна сумме углов треугольников ABD и CBD. Поскольку сумма углов треугольника равна 180°, то сумма углов четырехугольника равна 360°.

Следствие. В четырехугольнике только один из углов может быть больше развернутого.

Докажите это свойство самостоятельно.

Пример:

Докажите, что длина любой стороны четырехугольника меньше суммы длин трех остальных его сторон.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Решение:

Рассмотрим произвольный четырехугольник ABCD (рис. 11). Покажем, например, что АВ 1 В учебнике задачи на построение не обязательны для рассмотрения.

В треугольнике АВС известны две стороны АВ и ВС и угол В между ними. Следовательно, этот треугольник можно построить. Теперь можем от лучей АВ и СВ отложить углы, равные углам четырехугольника при вершинах А и С.

Проведенный анализ показывает, как строить искомый четырехугольник.

Строим треугольник по двум данным сторонам четырехугольника и углу между ними. На рисунке 12 это треугольник АВС. Далее от лучей АВ и СВ откладываем два известных угла четырехугольника. Два построенных луча пересекаются в точке D. Четырехугольник ABCD — искомый.

Параллелограмм. Свойства параллелограмма

Определение. Параллелограммом называют четырехугольник, у которого каждые две противолежащие стороны параллельны.

На рисунке 19 изображен параллелограмм ABCD. По определению параллелограмма имеем: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Рассмотрим некоторые свойства параллелограмма.
Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Теорема 2.1. Противолежащие стороны параллелограмма равны.

Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что АВ = CD и ВС = AD.

Проведем диагональ АС. Докажем, что треугольники АВС и CDA равны (рис. 20).

В этих треугольниках сторона АС — общая, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, углы 3 и 4 равны как накрест лежащие при параллельных прямых АВ и CD и секущей АС. Следовательно, треугольники АВС и CDA равны по второму признаку равенства треугольников. Отсюда АВ = CD и ВС = AD.

Теорема 2.2. Противолежащие углы параллелограмма равны.

Доказательство. На рисунке 19 изображен параллелограмм ABCD. Докажем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
При доказательстве предыдущей теоремы было установлено, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(рис. 20). Отсюда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеИз равенства углов 1 и 2 и равенства углов 3 и 4 следует, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеСледовательно, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Теорема 2.3. Диагонали параллелограмма точкой пересечения делятся пополам.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Доказательство. На рисунке 21 изображен параллелограмм ABCD, диагонали которого пересекаются в точке О. Докажем, что АО = ОС и ВО = OD.

Рассмотрим треугольники AOD и СОВ.
Имеем: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеравны как накрест лежащие при параллельных прямых AD и ВС и секущих АС и BD соответственно. Из теоремы 2.1 получаем: AD = ВС.

Следовательно, треугольники AOD и СОВ равны по второму признаку равенства треугольников. Отсюда АО = ОС, ВО = OD.

Определение. Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону параллелограмма, на прямую, содержащую противолежащую сторону.

На рисунке 22 каждый из отрезков AF, QE, ВМ, PN, СК является высотой параллелограмма ABCD.

Из курса геометрии 7 класса вы знаете, что все точки одной из двух параллельных прямых равноудалены от другой прямой. Поэтому AF = QE и ВМ = PN = СК.

Говорят, что высоты ВМ, СК, PN проведены к сторонам ВС и AD, а высоты AF, QE — к сторонам АВ и CD.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Пример №1

Докажите, что прямые, содержащие высоты треугольника, переcекаются в одной точке.

Решение:

Через каждую вершину данного треугольника АВС проведем прямую, параллельную противолежащей стороне. Получим треугольник Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(рис. 23).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Из построения следует, что четырехугольники Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— параллелограммы. Отсюда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеСледовательно, точка А является серединой отрезка Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Поскольку прямые Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкепараллельны, то высота АН треугольника АВС перпендикулярна отрезку Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеТаким образом, прямая АН — серединный перпендикуляр стороны Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкетреугольника Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеАналогично можно доказать, что прямые, содержащие две другие высоты треугольника АВС, являются серединными перпендикулярами сторон Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкетреугольника Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Так как серединные перпендикуляры сторон треугольника пересекаются в одной точке, то утверждение теоремы доказано.

Пример №2

Биссектриса тупого угла параллелограмма делит его сторону в отношении 2 : 1, считая от вершины острого угла. Найдите стороны параллелограмма, если его периметр равен 60 см.

Решение:

Пусть биссектриса тупого угла В параллелограмма ABCD (рис. 24) пересекает сторону AD в точке М. По условию AM : MD = 2 : 1.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Углы ABM и CBM равны по условию.
Углы СВМ и AM В равны как накрест лежащие при параллельных прямых ВС и AD и секущей ВМ.

Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеСледовательно, треугольник ВАМ равнобедренный, отсюда АВ = AM.

Пусть MD = х см, тогда АВ =АМ = 2х см, AD = Зх см. Поскольку противолежащие стороны параллелограмма равны, то его периметр равен 2 (АВ + AD). Учитывая, что по условию периметр параллелограмма равен 60 см, получаем:

2 (2х + Зх) = 60;
х = 6.

Следовательно, АВ = 12 см, AD = 18 см.

Ответ: 12 см, 18 см.

Признаки параллелограмма

Определение параллелограмма позволяет среди четырехугольников распознавать параллелограммы. Этой же цели служат следующие три теоремы, которые называют признаками параллелограмма.

Теорема 3.1 (обратная теореме 2.1). Если в четырехугольнике каждые две противолежащие стороны равны, то этот четырехугольник — параллелограмм.

Доказательство. На рисунке 29 изображен четырехугольник ABCD, в котором АВ = CD и ВС = AD. Докажем, что четырехугольник ABCD — параллелограмм.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Проведем диагональ АС. Треугольники АВС и CDA равны по третьему признаку равенства треугольников. Отсюда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеУглы 1 и 3 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеАналогично из равенства Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеследует, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Таким образом, в четырехугольнике ABCD каждые две противолежащие стороны параллельны, поэтому этот четырехугольник — параллелограмм.

Теорема 3.2. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Доказательство. На рисунке 30 изображен четырехугольник ABCD, в котором ВС = AD и Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеДокажем, что четырехугольник ABCD — параллелограмм.

Проведем диагональ АС. В треугольниках АВС и CDA имеем: ВС = AD по условию, углы 1 и 2 равны как накрест лежащие при параллельных прямых ВС и AD и секущей АС, а сторона АС общая. Следовательно, треугольники АВС и CDA равны по первому признаку равенства треугольников. Отсюда АВ = CD. Значит, в четырехугольнике ABCD каждые две противолежащие стороны равны. Поэтому по теореме 3.1 четырехугольник ABCD — параллелограмм.

Теорема 3.3 (обратная теореме 2.3). Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Доказательство. На рисунке 31 изображен четырехугольник ABCD, в котором диагонали АС и BD пересекаются в точке О, причем АО = ОС и ВО = OD. Докажем, что четырехугольник ABCD — параллелограмм.

Поскольку углы ВОС и DOA равны как вертикальные, АО = ОС и ВО = OD, то треугольники ВОС и DOA равны по первому признаку равенства треугольников. Отсюда ВС = AD и Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеУглы 1 и 2 являются накрест лежащими при прямых ВС и AD и секущей АС. Следовательно, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Таким образом, в четырехугольнике ABCD две противолежащие стороны равны и параллельны. По теореме 3.2 четырехугольник ABCD — параллелограмм.

Вы знаете, что треугольник можно однозначно задать его сторонами, то есть задача построения треугольника по трем сторонам имеет единственное решение. Иначе обстоит дело с параллелограммом. На рисунке 32 изображены параллелограммы Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкестороны которых равны, то есть Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеОднако очевидно, что сами параллелограммы не равны.

Сказанное означает, что если четыре рейки скрепить так, чтобы образовался параллелограмм, то полученная конструкция не будет жесткой.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Это свойство параллелограмма широко используют на практике. Благодаря его подвижности лампу можно устанавливать в удобное для работы положение, а раздвижную решетку — отодвигать на нужное расстояние в дверном проеме (рис. 33).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

На рисунке 34 изображена схема механизма, являющегося частью паровой машины. При увеличении скорости вращения оси шары отдаляются от нее под действием центробежной силы, тем самым поднимая заслонку, регулирующую количество пара. Механизм назван параллелограммом Уатта в честь изобретателя первой универсальной паровой машины.

Пример №3

Докажите, что если в четырехугольнике каждые два противолежащих угла равны, то этот четырехугольник — параллелограмм.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Решение:

На рисунке 35 изображен четырехугольник ABCD, в котором Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеДокажем, что четырехугольник ABCD — параллелограмм.

По теореме о сумме углов четырехугольника (теорема 1.1) Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеУчитывая, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеполучим: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Поскольку углы А и В — односторонние углы при прямых AD и ВС и секущей АВ, а их сумма равна 180°, то Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Аналогично доказываем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Следовательно, четырехугольник ABCD — параллелограмм.

Необходимо и достаточно

Из курса геометрии 7 класса вы узнали, что большинство теорем состоят из двух частей: условия (то, что дано) и заключения (то, что требуется доказать).

Если утверждение, выражающее условие, обозначить буквой А, а утверждение, выражающее заключение, — буквой В, то формулировку теоремы можно изобразить следующей схемой: если А, то В.
Например, теорему 2.3 можно сформулировать так:

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Тогда теорему 3.3, обратную теореме 2.3, можно сформулировать так:

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Часто в повседневной жизни в своих высказываниях мы пользуемся словами «необходимо», «достаточно». Приведем несколько примеров.

  • Для того чтобы уметь решать задачи, необходимо знать теоремы.
  • Если вы на математической олимпиаде правильно решили все предложенные задачи, то этого достаточно для того, чтобы занять первое место.

Употребление слов «необходимо» и «достаточно» тесно связано с теоремами.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Условие А является достаточным для заключения В. Вместе с тем делимость числа нацело на 5 (утверждение В) необходима для делимости числа нацело на 10 (утверждение А).

Приведем еще один пример:
Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

В этой теореме утверждение А является достаточным условием для утверждения В, то есть для того, чтобы два угла были равны, достаточно, чтобы они были вертикальными. В этой же теореме утверждение В является необходимым условием для утверждения А, то есть для того, чтобы два угла были вертикальными, необходимо, чтобы они были равны. Отметим, что утверждение В не является достаточным условием для утверждения А. Действительно, если два угла равны, то это совсем не означает, что они вертикальные.

Итак, в любой теореме вида если А, то В утверждение А является достаточным для утверждения В, а утверждение В — необходимым для утверждения А.

Если справедлива не только теорема если А, то В, но и обратная теорема если В, то А, то А является необходимым и достаточным условием для В, а В — необходимым и достаточным условием для А.

Например, теоремы 3.3 и 2.3 являются взаимно обратными. На языке «необходимо — достаточно» этот факт можно сформулировать так: для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его диагонали точкой пересечения делились пополам.

Подчеркнем, что если в теореме есть слова «необходимо и достаточно», то она объединяет две теоремы: прямую и обратную (прямой теоремой может быть любая из двух теорем, тогда другая будет обратной). Следовательно, доказательство такой теоремы должно состоять из двух частей: доказательств прямой и обратной теорем. Теорему, объединяющую прямую и обратную теоремы, называют критерием.

Иногда вместо «необходимо и достаточно» говорят «тогда и только тогда». Например, взаимно обратные теоремы 2.1 и 3.1 можно объединить в следующий критерий:

  • четырехугольник является параллелограммом тогда и только тогда, когда каждые две его противолежащие стороны равны.

Сформулируйте самостоятельно теорему 2.2 и ключевую задачу п. 3 в виде теоремы-критерия.

Прямоугольник

Параллелограмм — это четырехугольник, однако очевидно, что не каждый четырехугольник является параллелограммом. В этом случае говорят, что параллелограмм — это отдельный вид четырехугольника. Рисунок 42 иллюстрирует этот факт.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Существуют также отдельные виды параллелограммов.

Определение. Прямоугольником называют параллелограмм, у которого все углы прямые.

На рисунке 43 изображен прямоугольник ABCD.
Из определения следует, что прямоугольник имеет все свойства параллелограмма. В прямоугольнике:

  • противолежащие стороны равны;
  • диагонали точкой пересечения делятся пополам.

Однако прямоугольник имеет свои особые свойства, которыми не обладает параллелограмм, отличный от прямоугольника. Так, из определения следует, что все углы прямоугольника равны. Еще одно свойство прямоугольника выражает следующая теорема.

Теорема 4.1. Диагонали прямоугольника равны.

Доказательство. На рисунке 44 изображен прямоугольник ABCD. Докажем, что его диагонали АС и BD равны.
В прямоугольных треугольниках ABD и DCA катеты АВ и DC равны, а катет AD общий. Поэтому треугольники ABD и DCA равны по двум катетам. Отсюда BD = АС.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Определение прямоугольника позволяет среди параллелограммов распознавать прямоугольники. Этой же цели служат следующие две теоремы, которые называют признаками прямоугольника.

Теорема 4.2. Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.

Докажите эту теорему самостоятельно.

Теорема 4.3. Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.

Доказательство. На рисунке 45 изображен параллелограмм ABCD, диагонали АС и BD которого равны. Докажем, что параллелограмм ABCD — прямоугольник.

Рассмотрим треугольники ABD и DCА. У них АВ = CD, BD =АС, AD — общая сторона. Следовательно, эти треугольники равны по третьему признаку равенства треугольников. Отсюда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеЭти углы являются односторонними при параллельных прямых АВ и DC и секущей AD. Таким образом, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеТогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеПоэтому по теореме 4.2 параллелограмм ABCD — прямоугольник.

Ромб

Вы уже знаете, что прямоугольник — это отдельный вид параллелограмма. Познакомимся еще с одним видом параллелограмма — ромбом.

Определение. Ромбом называют параллелограмм, у которого все стороны равны.

На рисунке 47 изображен ромб ABCD.
Из определения следует, что ромб имеет все свойства параллелограмма. В ромбе:

  • противолежащие углы равны;
  • диагонали точкой пересечения делятся пополам.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Однако ромб имеет и свои особые свойства.

Теорема 5.1. Диагонали ромба перпендикулярны и являются биссектрисами его углов.

Доказательство. На рисунке 48 изображен ромб ABCD, диагонали которого пересекаются в точке О. Докажем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Поскольку по определению ромба все его стороны равны, то треугольник АВС равнобедренный (АВ = ВС). По свойству диагоналей параллелограмма АО = ОС. Тогда отрезок ВО является медианой треугольника АВС, а значит, и высотой и биссектрисой этого треугольника. Следовательно, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Распознавать ромбы среди параллелограммов позволяют не только определение ромба, но и следующие две теоремы, которые называют признаками ромба.

Теорема 5.2. Если диагонали параллелограмма перпендикулярны, то этот параллелограмм — ромб.

Теорема 5.3. Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб.

Докажите эти теоремы самостоятельно.

Квадрат

Определение. Квадратом называют прямоугольник, у которого все стороны равны.

На рисунке 50 изображен квадрат ABCD.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Из приведенного определения следует, что квадрат — это ромб, у которого все углы равны. Значит, квадрат является отдельным видом и прямоугольника, и ромба. Это иллюстрирует рисунок 51. Поэтому квадрат обладает всеми свойствами прямоугольника и ромба. Отсюда следует, что:

  • все углы квадрата прямые;
  • диагонали квадрата равны, перпендикулярны и являются биссектрисами его углов.

Средняя линия треугольника

Определение. Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.

На рисунке 56 отрезки MN, NE, ЕМ — средние линии треугольника АВС.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Теорема 7.1. Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.

Доказательство. Пусть MN — средняя линия треугольника АВС (рис. 57). Докажем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

На прямой MN отметим точку Е так, что MN = NE (рис. 57). Соединим отрезком точки Е и С. Поскольку точка N является серединой отрезка ВС, то BN = NC. Углы 1 и 2 равны как вертикальные. Следовательно, треугольники MBN и ECN равны по первому признаку равенства треугольников. Отсюда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеУчитывая, что AM = ВМ, получим: ЕС = AM. Углы 3 и 4 являются накрест лежащими при прямых АВ и ЕС и секущей ВС. Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Таким образом, в четырехугольнике АМЕС стороны AM и ЕС параллельны и равны. Следовательно, по теореме 3.2 четырехугольник АМЕС является параллелограммом. Отсюда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкето есть Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Также ME = АС. Поскольку Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Пример №4

Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.

Решение:

В четырехугольнике ABCD точки М, N, К и Р — середины сторон АВ, ВС, CD и AD соответственно (рис. 58).
Отрезок MN — средняя линия треугольника АВС. По свойству средней линии треугольника Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Отрезок РК — средняя линия треугольника ADC. По свойству средней линии треугольника Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Поскольку Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкето Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Из равенств Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеполучаем: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Следовательно, в четырехугольнике MNKP стороны MN и РК равны и параллельны, поэтому четырехугольник MNKP — параллелограмм.

Трапеция

Определение. Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Каждый из четырехугольников, изображенных на рисунке 62, является трапецией.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Параллельные стороны трапеции называют основаниями, а непараллельные — боковыми сторонами (рис. 63).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

В трапеции ABCD Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеуглы Аи D называют углами при основании AD, а углы В и С — углами при основании ВС.

Определение. Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую, содержащую другое основание.

На рисунке 64 каждый из отрезков ВМ, EF, DK, PQ является высотой трапеции ABCD. Длины этих отрезков равны расстоянию между параллельными прямыми ВС и AD. Поэтому ВМ = EF = DK = PQ.

На рисунке 65 изображена трапеция ABCD, у которой боковые стороны АВ и CD равны. Такую трапецию называют равнобокой или равнобедренной.

Если боковая сторона трапеции является ее высотой, то такую трапецию называют прямоугольной (рис. 66).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Трапеция — это отдельный вид четырехугольника. Связь между четырехугольниками и их отдельными видами показана на рисунке 67.

Определение. Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.

На рисунке 68 отрезок MN — средняя линия трапеции ABCD.

Теорема 8.1. Средняя линия трапеции параллельна основаниям и равна половине их суммы.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Доказательство. Пусть MN — средняя линия трапеции ABCD (рис. 69). Докажем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Проведем прямую BN и точку ее пересечения с прямой AD обозначим буквой Е.

Поскольку точка N — середина отрезка CD, то CN = ND. Углы 1 и 2 равны как вертикальные, а углы 3 и 4 равны как накрест лежащие при параллельных прямых ВС и АЕ и секущей CD. Следовательно, треугольники BCN и EDN равны по второму признаку равенства треугольников. Отсюда ВС = DE и BN = NE. Тогда отрезок MN — средняя линия треугольника АВЕ. Из этого следует, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкето есть Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеИмеем: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Пример №5 (свойства равнобокой трапеции)

Докажите, что в равнобокой трапеции:

  1. углы при каждом основании равны;
  2. диагонали равны;
  3. высота трапеции, проведенная из вершины тупого угла, делит основание трапеции на два отрезка, меньший из которых равен половине разности оснований, а больший — половине суммы оснований (средней линии трапеции).

Решение:

Рассмотрим равнобокую трапецию ABCD (АВ = CD).
1) Проведем высоты ВМ и СК (рис. 70). Поскольку АВ = CD и ВМ = СК, то прямоугольные треугольники АМВ и DKC равны по катету и гипотенузе. Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Имеем: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеСледовательно, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

2) Рассмотрим треугольники ACD и DBA (рис. 71).

Имеем: АВ = CD, AD — общая сторона, углы BAD и CDA равны как углы при основании равнобокой трапеции. Следовательно, треугольники ACD и DBA равны по двум сторонам и углу между ними. Тогда АС = BD.
3) В четырехугольнике ВМКС (рис. 70) Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеугол ВМК прямой. Следовательно, этот четырехугольник является прямоугольником. Отсюда МК = ВС.
Из равенства треугольников АМВ и DKC следует, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеТогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеЧто можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Центральные и вписанные углы

Определение. Центральным углом окружности называют угол с вершиной в центре окружности.

На рисунке 76 угол АОВ — центральный. Стороны этого угла пересекают окружность в точках А и В. Эти точки делят окружность на две дуги, выделенные на рисунке 76 разным цветом.

Точки А и В называют концами дуги, они принадлежат каждой из выделенных дуг. Каждую из этих дуг можно обозначить так: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(читают: «дуга АВ»).

Однако по записи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеневозможно отличить дуги на рисунке 76. Если на какой-нибудь из двух дуг отметить точку (на рисунке 77 это точка М), то понятно, что обозначение Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеотносится к «синей» дуге. Если на одной из двух дуг АВ отмечена точка, то договоримся, что обозначение Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеотносится к дуге, которой эта точка не принадлежит (на рисунке 77 это «зеленая» дуга).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Дуга АВ принадлежит центральному углу АОВ (рис. 77). В этом случае говорят, что центральный угол АОВ опирается на дугу АВ.

Каждая дуга окружности, как и вся окружность, имеет градусную меру. Градусную меру всей окружности считают равной 360°. Если центральный угол MON опирается на дугу MN (рис. 78), то градусную меру дуги MN считают равной градусной мере угла MON и записывают: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(читают: «градусная мера дуги MN равна градусной мере угла MON). Градусную меру дуги MEN (рис. 78) считают равной 360° — Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

На рисунке 79 изображена окружность, в которой проведены два перпендикулярных диаметра АВ и CD.

Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеКаждую из дуг АСВ и ADB называют полуокружностью. На рисунке 79 полуокружностями являются также дуги CAD и CBD.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

О хорде, соединяющей концы дуги, говорят, что хорда стягивает дугу. На рисунке 80 хорда АВ стягивает каждую из дуг АВ и АКВ.

Любая хорда стягивает две дуги, сумма градусных мер которых равна 360°.

Определение. Вписанным углом окружности называют угол, вершина которого принадлежит окружности, а стороны пересекают окружность.

На рисунке 81 угол АВС — вписанный. Дуга АС принадлежит этому углу, а дуга АВС — не принадлежит. В таком случае говорят, что вписанный угол АВС опирается на дугу АС. Также можно сказать, что вписанный угол АВС опирается на хорду АС.

Теорема 9.1. Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство. О На рисунке 81 угол АВС вписанный.

Докажем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Рассмотрим три случая расположения центра О окружности относительно вписанного угла АВС.

Случай 1. Центр О принадлежит одной из сторон угла, например стороне ВС (рис. 82).
Проведем радиус ОА. Центральный угол АОС — внешний угол равнобедренного треугольника АВО (стороны ОА и ОВ равны как радиусы). Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеОднако Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеОтсюда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Случай 2. Центр О принадлежит углу, однако не принадлежит ни одной из его сторон (рис. 83).
Проведем диаметр ВК. Согласно доказанному Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеЧто можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Имеем:
Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Случай 3. Центр О не принадлежит углу (рис. 84).
Для третьего случая проведите доказательство самостоятельно.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Следствие 1. Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 85).

Следствие 2. Вписанный угол, опирающийся на диаметр (полуокружность), — прямой (рис. 86).

Докажите эти свойства самостоятельно.

Пример №6 (свойство угла между касательной и хордой).

Отрезок АВ — хорда окружности с центром О (рис. 87). Через точку А проведена касательная MN. Докажите, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Решение:

Проведем диаметр AD (рис. 87). Тогда угол В равен 90° как вписанный, опирающийся на диаметр AD. В прямоугольном треугольнике ABD Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеПоскольку MN — касательная, то Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеТогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеПолучаем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Следовательно, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Имеем:
Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Пример №7

Постройте касательную к данной окружности, проходящую через данную точку, лежащую вне окружности.

Решение:

На рисунке 88 изображены окружность с центром О и точка М, лежащая вне этой окружности.

Пусть X — такая точка окружности, что прямая MX является касательной (рис. 88). Тогда угол МХО прямой. Следовательно, его можно рассматривать как вписанный в окружность с диаметром МО.

Проведенный анализ показывает, как провести построение.

Построим отрезок МО и разделим его пополам (рис. 89). Пусть точка К — его середина. Построим окружность радиуса КО с центром К. Обозначим точки пересечения построенной и данной окружностей буквами Е и F. Тогда каждая из прямых ME и MF является искомой касательной.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Действительно, угол МЕО равен 90° как вписанный угол, опирающийся на диаметр МО. Отрезок ОЕ — радиус данной окружности. Тогда по признаку касательной прямая ME — искомая касательная.

Описанная и вписанная окружности четырехугольника

Определение. Окружность называют описанной около четырехугольника, если она проходит через все его вершины.

На рисунке 103 изображена окружность, описанная около четырехугольника ABCD. В этом случае также говорят, что четырехугольник вписан в окружность.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Теорема 10.1. Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°.

Доказательство. Пусть четырехугольник ABCD вписан в окружность (рис. 103). Докажем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Поскольку углы А и С являются вписанными, то Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Имеем: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке
Аналогично можно показать, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Вы знаете, что около любого треугольника можно описать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя описать окружность около параллелограмма, отличного от прямоугольника. Распознавать четырехугольники, около которых можно описать окружность, позволяет следующая теорема.

Теорема 10.2 (обратная теореме 10.1). Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.

Доказательство. Рассмотрим четырехугольник ABCD, в котором Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеДокажем, что около него можно описать окружность.

Предположим, что около этого четырехугольника нельзя описать окружность. Опишем окружность около треугольника ABD. По предположению точка С не принадлежит этой окружности. Поэтому возможны два случая.

Случай 1. Точка С лежит вне описанной окружности треугольника ABD (рис. 104).

Пусть сторона ВС пересекает окружность в точке Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеЧетырехугольник Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкевписан в окружность. Тогда по теореме 10.1 получаем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеНо по условию Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеОтсюда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеОднако это равенство выполняться не может, так как по свойству внешнего угла треугольникаЧто можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Итак, точка С не может лежать вне окружности, описанной около треугольника ABD.
Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Случай 2. Точка С лежит внутри описанной окружности треугольника ABD (рис. 105). Рассуждая аналогично, можно показать, что точка С не может лежать внутри рассматриваемой окружности. Убедитесь в этом самостоятельно.

Таким образом, предположив, что точка С не принадлежит окружности, описанной около треугольника ABD, мы получили противоречие.

Теорему 10.2 можно рассматривать как признак принадлежности четырех точек одной окружности.

Если четырехугольник вписан в окружность, то существует точка, равноудаленная от всех его вершин (центр описанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения серединных перпендикуляров двух соседних сторон четырехугольника.

Определение. Окружность называют вписанной в четырехугольник, если она касается всех его сторон.

На рисунке 106 изображена окружность, вписанная в четырехугольник ABCD. В этом случае также говорят, что четырехугольник описан около окружности.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Теорема 10.3. Если четырехугольник является описанным около окружности, то суммы его противолежащих сторон равны.

Доказательство. Пусть четырехугольник ABCD описан около окружности (рис. 107). Докажем, что АВ + CD = ВС + AD.

Точки М, N, Р, К — точки касания окружности со сторонами четырехугольника.

Поскольку отрезки касательных, проведенных к окружности через одну точку, равны, то АК =АМ, ВМ = BN, CN = СР, DP = DK. Пусть АК = а, ВМ = b, CN = с, DP = d.

Тогда АВ + CD = a + b + c + d,
ВС + AD = b + c + a + d.

Следовательно, АВ + CD = ВС + AD.

Вы знаете, что в любой треугольник можно вписать окружность. Однако не всякий четырехугольник обладает таким свойством. Например, нельзя вписать окружность в прямоугольник, отличный от квадрата. Распознавать четырехугольники, в которые можно вписать окружность, позволяет следующая теорема.

Теорема 10.4. Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.

Доказательство. Рассмотрим выпуклый четырехугольник ABCD, в котором АВ + CD = ВС + AD. Докажем, что в него можно вписать окружность.

Пусть биссектрисы углов А и В пересекаются в точке О (рис. 108). Тогда точка О равноудалена от сторон АВ, ВС и AD. Следовательно, существует окружность с центром в точке О, которая касается этих трех сторон.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Предположим, что эта окружность не касается стороны CD. Тогда возможны два случая.

Случай 1. Сторона CD не имеет общих точек с построенной окружностью.
Проведем касательную Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкепараллельно стороне CD (рис. 108). Четырехугольник Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеописан около окружности. Тогда по теореме 10.3 получаем, чтоЧто можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Однако по условию
Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Вычтем из равенства (2) равенство (1):
Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Отсюда имеем: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Это равенство противоречит утверждению, доказанному в ключевой задаче п. 1.

Итак, сторона CD должна иметь общие точки с рассматриваемой окружностью.

Случай 2. Сторона CD имеет две общие точки с построенной окружностью.

Рассуждая аналогично, можно показать, что сторона CD не может иметь две общие точки с построенной окружностью. Убедитесь в этом самостоятельно.

Таким образом, предположив, что построенная окружность не касается стороны CD, мы получили противоречие.

Если четырехугольник описан около окружности, то существует точка, равноудаленная от всех его сторон (центр вписанной окружности). Чтобы найти эту точку, достаточно найти точку пересечения биссектрис двух соседних углов этого четырехугольника.

Пример №8 (признак принадлежности четырех точек одной окружности).

Точки А, М, N, В таковы, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкепричем точки M и N лежат в одной полуплоскости относительно прямой АВ. Докажите, что точки А, М, N, В лежат на одной окружности.

Решение:

Пусть Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеОколо треугольника АМВ опишем окружность (рис. 109). Пусть С — произвольная точка окружности, не принадлежащая дуге АМВ. Тогда четырехугольник АСВМ вписан в окружность. Отсюда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеИмеем: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеСледовательно, по теореме 10.2 около четырехугольника ACBN можно описать окружность. Поскольку около треугольника АВС можно описать только одну окружность, то этой окружности принадлежат как точка М, так и точка N.

Сумма углов четырехугольника

  • Сумма углов четырехугольника равна 360°.

Параллелограмм

  • Параллелограммом называют четырехугольник, у которого каждые две противолежащие стороны параллельны.

Свойства параллелограмма

  • Противолежащие стороны параллелограмма равны.
  • Противолежащие углы параллелограмма равны.
  • Диагонали параллелограмма точкой пересечения делятся пополам.

Высота параллелограмма

  • Высотой параллелограмма называют перпендикуляр, опущенный из любой точки прямой, содержащей сторону параллелограмма, на прямую, содержащую противолежащую сторону.

Признаки параллелограмма

  • Если в четырехугольнике каждые две противолежащие стороны равны, то этот четырехугольник — параллелограмм.
  • Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
  • Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Прямоугольник

  • Прямоугольником называют параллелограмм, у которого все углы прямые.

Особое свойство прямоугольника

  • Диагонали прямоугольника равны.

Признаки прямоугольника

  • Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник.
  • Если диагонали параллелограмма равны, то этот параллелограмм — прямоугольник.

Ромб

  • Ромбом называют параллелограмм, у которого все стороны равны.

Особое свойство ромба

  • Диагонали ромба перпендикулярны и являются биссектрисами его углов.

Признаки ромба

  • Если диагонали параллелограмма перпендикулярны, то этот параллелограмм — ромб.
  • Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм — ромб.

Квадрат

  • Квадратом называют прямоугольник, у которого все стороны равны.

Средняя линия треугольника

  • Средней линией треугольника называют отрезок, соединяющий середины двух его сторон.

Свойство средней линии треугольника

  • Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине.

Трапеция

  • Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Высота трапеции

  • Высотой трапеции называют перпендикуляр, опущенный из любой точки прямой, содержащей одно из оснований, на прямую, содержащую другое основание.

Средняя линия трапеции

  • Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.

Свойство средней линии трапеции

  • Средняя линия трапеции параллельна основаниям и равна половине их суммы.

Центральный угол окружности

  • Центральным углом окружности называют угол с вершиной в центре окружности.

Вписанный угол окружности

  • Вписанным углом окружности называют угол, вершина которого принадлежит окружности, а стороны пересекают окружность.

Градусная мера вписанного угла окружности

  • Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Свойства вписанных углов

  • Вписанные углы, опирающиеся на одну и ту же дугу, равны.
  • Вписанный угол, опирающийся на диаметр (полуокружность), — прямой.

Окружность, описанная около четырехугольника

  • Окружность называют описанной около четырехугольника, если она проходит через все его вершины.

Свойство четырехугольника, вписанного в окружность

  • Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°.

Признак четырехугольника, около которого можно описать окружность

  • Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность.

Окружность, вписанная в четырехугольник

  • Окружность называют вписанной в четырехугольник, если она касается всех его сторон.

Свойство окружности, описанной около четырехугольника

  • Если четырехугольник является описанным около окружности, то суммы его противолежащих сторон равны.

Признак четырехугольника, в который можно вписать окружность

  • Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.

Вписанные и описанные четырехугольники

Четырехугольник называют вписанным в окружность, если все его вершины лежат на окружности. Окружность при этом называют описанной около четырехугольника (рис. 92).

Теорема 1 (свойство углов вписанного четырехугольника). Сумма противолежащих углов вписанного четырехугольника равна 180°.

Доказательство:

Пусть в окружность с центром Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкевписан четырехугольник Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(рис. 92). Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(по теореме о вписанном угле).

Поэтому Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеТогда

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Следствие 1. Если около трапеции можно описать окружность, то трапеция равнобокая.

Доказательство:

Пусть трапеция Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкевписана в окружность, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(рис. 93). Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеНо в трапеции Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеПоэтому Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеСледовательно, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— равнобокая трапеция (по признаку равнобокой трапеции).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Как известно из курса геометрии 7 класса, около любого треугольника можно описать окружность. Для четырехугольников это не так.

Теорема 2 (признак вписанного четырехугольника). Если в четырехугольнике сумма двух противолежащих углов равна 180°, то около него можно описать окружность.

Доказательство:

Пусть в четырехугольнике Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеЧто можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеПроведем через точки Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеокружность. Докажем (методом от противного), что вершина Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкечетырехугольника также будет лежать на этой окружности.

1) Допустим, что вершина Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкележит внутри круга (рис. 94). Продолжим Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкедо пересечения с окружностью в точке Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеТогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(по условию) и Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(по свойству углов вписанного четырехугольника). Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеНо Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— внешний, a Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— не смежный с ним внутренний угол треугольника Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеПоэтому Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкедолжен быть больше, чем Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Пришли к противоречию, значит, наше предположение ошибочно, и точка Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкене может лежать внутри круга.

2) Аналогично можно доказать, что вершина Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкене может лежать вне круга.

3) Следовательно, точка Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкележит на окружности, ограничивающей круг (рис. 92), а значит около четырехугольника Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеможно описать окружность.

Следствие 1. Около любого прямоугольника можно описать окружность.

Следствие 2. Около равнобокой трапеции можно описать окружность.

Заметим, что, как и в треугольнике, центром описанной около четырехугольника окружности является точка пересечения серединных перпендикуляров к его сторонам, поскольку она равноудалена от всех его вершин. Например, в прямоугольнике такой точкой является точка пересечения диагоналей.

Четырехугольник называют описанным около окружности, если все его стороны касаются окружности. Окружность при этом называют вписанной в четырехугольник (рис. 95).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Теорема 3 (свойство сторон описанного четырехугольника). В описанном четырехугольнике суммы противолежащих сторон равны.

Доказательство:

Пусть четырехугольник Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— описанный, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— точки касания (рис. 96). По свойству отрезков касательных, проведенных из одной точки к окружности, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Ha рисунке 96 равные отрезки обозначены одинаковым цветом.

Тогда Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Следовательно, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Как известно из курса геометрии 7 класса, в любой треугольник можно вписать окружность. Для четырехугольников это не так.

Теорема 4 (признак описанного четырехугольника). Если в четырехугольнике суммы противолежащих сторон равны, то в этот четырехугольник можно вписать окружность.

Доказательство этой теоремы является достаточно громоздким, поэтому его не приводим.

Следствие. В любой ромб можно вписать окружность.

Как и в треугольнике, центром окружности, вписанной в четырехугольник, является точка пересечения биссектрис его углов. Так как диагонали ромба являются биссектрисами его углов, то центр вписанной в ромб окружности — точка пересечения диагоналей.

Теорема Фалеса

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство:

Пусть параллельные прямые Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкепересекают стороны угла с вершиной Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(рис. 101), при этом Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеДокажем, что Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

1) Проведем через точки Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкепрямые Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкепараллельные прямой Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(по условию), Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(как соответственные углы при параллельных прямых Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(как соответственные углы при параллельных прямых Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеПоэтому

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(по стороне и двум прилежащим к ней углам), а значит, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке(как соответственные стороны равных треугольников).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

2) Четырехугольник Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— параллелограмм (по построению). Поэтому Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеАналогично Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке-параллелограмм, поэтому Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Таким образом, Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеследовательно Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкечто и требовалось доказать.

Следствие. Параллельные прямые, пересекающие две данные прямые и отсекающие на одной из них равные отрезки, отсекают равные отрезки и на другой прямой.

С помощью линейки без делений по теореме Фалеса возможно разделить отрезок на любое количество равных частей.

Пример №9

Разделите отрезок Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкена б равных частей.

Решение:

1) Пусть Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— данный отрезок (рис. 102). Проведем произвольный луч Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи отложим на нем циркулем последовательно 6 отрезков: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

2) Через точки Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеи Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкепроведем прямую.

3) Через точки Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке— с помощью угольника и линейки проведем прямые, параллельные прямой Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеТогда по теореме Фалеса эти прямые разделят отрезок АВ на 6 равных частей: Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Фалес Милетский — древнегреческий математик и астроном. По давней традиции его считают одним из так называемых семи мудрецов света, ведь он был одним из самых выдающихся математиков своего времени.

В молодые годы любознательный юноша отправился путешествовать по Египту с целью познакомиться с египетской культурой и Фалес не только быстро изучил то, что в то время уже было известно египетским ученым, но и сделал ряд собственных научных открытий. Он самостоятельно определил высоту египетских пирамид по длине их тени, чем очень удивил египетского фараона Амазиса, а вернувшись на родину, создал в Милети философскую школу.

По мнению историков Фалес был первым, кто познакомил греков с геометрией и стал первым греческим астрономом. Он предсказал солнечное затмение, произошедшее 28 мая 585 года до н. э.

На гробнице Фалеса высечена надпись: «Насколько мала эта гробница, настолько велика слава этого царя астрономов в области звезд».

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Четырехугольники и окружность
  • Параллелограмм, его свойства и признаки
  • Площадь параллелограмма
  • Прямоугольник и его свойства
  • Сумма углов треугольника
  • Внешний угол треугольника
  • Свойство точек биссектрисы угла
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:ВСЕ правила и формулы ПЛАНИМЕТРИИСкачать

ВСЕ правила и формулы ПЛАНИМЕТРИИ

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Видео:Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точкеСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Ромб – это параллелограмм, у которого все стороны равны.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Что можно сказать о четырехугольнике если серединные перпендикуляры пересекаются в одной точке

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

🔥 Видео

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Вписанные и описанные окружности. Вебинар | Математика

Такого подхода к описанному четырехугольнику, вы еще не виделиСкачать

Такого подхода к  описанному  четырехугольнику, вы еще не видели

№1,17 | Все теория по планиметрии за 4 часа | Решаем все прототипы №1 из ФИПИСкачать

№1,17 | Все теория по планиметрии за 4 часа | Решаем все прототипы №1 из ФИПИ

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

4.2. Вписанные и описанные окружности. Четырехугольники.Скачать

4.2. Вписанные и описанные окружности. Четырехугольники.

8 класс, 37 урок, Теорема о пересечении высот треугольникаСкачать

8 класс, 37 урок, Теорема о пересечении высот треугольника

Изогональное сопряжение | Олимпиадная математикаСкачать

Изогональное сопряжение | Олимпиадная математика

Биссектрисы пересекаются в одной точке| Задачи 1-10 | Решение задач | Волчкевич| Уроки геометрии 7-8Скачать

Биссектрисы пересекаются в одной точке| Задачи 1-10 | Решение задач | Волчкевич| Уроки геометрии 7-8

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая ЭйлераСкачать

#207. Окружность девяти точек | лемма о трезубце | ортотреугольник | прямая Эйлера
Поделиться или сохранить к себе: