Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

В основании прямой призмы лежит прямоугольный треугольник, катеты которого равны 13 и 4. Найдите объём призмы, если её высота равна 5.

Найдём площадь основания:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Найдём объём призмы:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Аналоги к заданию № 513040: 513090 513110 513130 Все

Видео:Диагонали четырехугольника равны 4 и 5.Скачать

Диагонали четырехугольника равны 4 и 5.

Как найти объём прямой призмы, основанием которой служит данный четырёхугольник, а боковое ребро равно 5 см?

Видео:🔴 В основании прямой призмы лежит прямоугольный ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 В основании прямой призмы лежит прямоугольный ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

Ваш ответ

Видео:В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 6. Боковые ребра призмы...Скачать

В основании прямой призмы лежит прямоугольный треугольник с катетами 5 и 6. Боковые ребра призмы...

решение вопроса

Видео:ОГЭ по математике. Площадь четырехугольника можно вычислить по формуле (вар. 5)Скачать

ОГЭ по математике. Площадь четырехугольника можно вычислить по формуле (вар. 5)

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,754
  • разное 16,824

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:№230. Основание прямой призмы — треугольник со сторонами 5 см и 3 см и углом, равным 120Скачать

№230. Основание прямой призмы — треугольник со сторонами 5 см и 3 см и углом, равным 120

Задание №16 ЕГЭ по математике базового уровня

Видео:Площадь поверхности призмы. 11 класс.Скачать

Площадь поверхности призмы. 11 класс.

Стереометрия

В задании №16 базового уровня ЕГЭ по математике нам предстоит столкнуться со стереометрией. Как таковой «стереометрии» мы не встретим, обычно условие задания содержит объемную фигуру, в которой нам необходимо найти какое-либо расстояние. В данном задании необходимо правильно применить пространственное мышление и выбрать нужное сечение, остальные расчеты происходят в плоскости, причем по несложным формулам (теорема Пифагора и т.д.). Какой-либо конкретной теории я пока приводить не буду, а рассмотрю типовые варианты, на которых мы и рассмотрим алгоритмы решения задач данного типа.

Разбор типовых вариантов заданий №16 ЕГЭ по математике базового уровня

Вариант 16МБ1

Радиус основания цилиндра равен 13, а его образующая 18. Сечение, параллельное оси цилиндра, удалено от нее на расстояние, равное 12. Найдите площадь этого сечения.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения:
  1. Определить тип фигуры, образующей сечение.
  2. Записать формулу для нахождения площади фигуры, образующей сечение.
  3. Вычислить недостающие данные.
  4. Вычислить искомую площадь сечения.
Решение:

Из рисунка видно, что сечение является прямоугольником, одна из сторон которого образующая цилиндра.

Площадь прямоугольника равна произведению длины на ширину.

Длина прямоугольника – 18, из условия. Осталось вычислить ширину. Сделаем дополнительный чертеж цилиндра сверху:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Ширина прямоугольника – CD.

По условию «Сечение, параллельное оси цилиндра, удалено от нее на расстояние, равное 12». Расстояние от точки до прямой – это длина перпендикуляра, проведенного из этой точки на прямую. То есть на чертеже АВ = 12.

СD = СВ + ВD. СВ = ВD

Рассмотрим треугольник ВСА. Треугольник ВСА – прямоугольный.

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

В данном случае СА 2 = СВ 2 + АВ 2

СВ 2 — неизвестное слагаемое. Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое.

СВ 2 = СА 2 — АВ 2

СВ = √(13 2 — 12 2 ) = √(169 — 144) = √25 = 5

Для решения задачи необходимо знать СD = СВ + ВD = 5 + 5 = 10

Вычислим искомую площадь сечения.

Вариант 16МБ2

Стороны основания правильной треугольной пирамиды равны 24, а боковые рёбра равны 37. Найдите площадь боковой поверхности этой пирамиды.

Алгоритм выполнения:
  1. Проанализировать какие данные необходимо вычислить для ответа на вопрос задачи.
  2. Найти площади треугольников.
  3. Найти площадь боковой поверхности пирамиды.
Решение:

Проанализируем, какие данные необходимо вычислить для ответа на вопрос задачи.

В основании правильной треугольной пирамиды лежит равносторонний треугольник. Боковые ребра пирамиды, равные 37, образуют три равнобедренных треугольника, которые составляют ее боковую поверхность.

Найдем площади треугольников.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5Так как треугольник равнобедренный, то высота BH делит сторону AC пополам, то есть, AH=AC:2=24:2=12. Рассмотрим треугольник АВН. Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. В данном случае АВ 2 = ВН 2 + АН 2

ВН 2 — неизвестное слагаемое. Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое.

ВН 2 = АВ 2 — АН 2 Следовательно, высота BH, равна: Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Площадь треугольника равна половине произведения основания на высоту.

Тогда, площадь треугольника может быть вычислена как

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Найдем площадь боковой поверхности пирамиды.

Боковая поверхность пирамиды состоит из трех треугольников. Найдем ее площадь:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5Ответ: 1260.

Вариант 16МБ3

Стороны основания правильной треугольной пирамиды равны 16, а боковые рёбра равны 17. Найдите площадь боковой поверхности этой пирамиды.

Алгоритм выполнения:
  1. Проанализировать какие данные необходимо вычислить для ответа на вопрос задачи.
  2. Найти площади треугольников.
  3. Найти площадь боковой поверхности пирамиды.
Решение:

Проанализируем, какие данные необходимо вычислить для ответа на вопрос задачи.

В основании правильной треугольной пирамиды лежит равносторонний треугольник. Боковые ребра пирамиды, равные 17, образуют три равнобедренных треугольника, которые составляют ее боковую поверхность.

Найдем площади треугольников.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Так как треугольник равнобедренный, то высота BH делит сторону AC пополам, то есть, AH=AC:2=16:2=8.

Рассмотрим треугольник АВН.

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов.

В данном случае АВ 2 = ВН 2 + АН 2

ВН 2 — неизвестное слагаемое. Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое.

ВН 2 = АВ 2 — АН 2

Следовательно, высота BH, равна:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Площадь треугольника равна половине произведения основания на высоту.

Тогда, площадь треугольника может быть вычислена как

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Найдем площадь боковой поверхности пирамиды.

Боковая поверхность пирамиды состоит из трех треугольников. Найдем ее площадь:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5Ответ: 360.

Вариант 16МБ4

Найдите объем правильной четырехугольной пирамиды, сторона основания которой равна 4, а боковое ребро равно √17.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Вспомним формулу площади правильной пирамиды — одна треть от произведения площади основания и высоты.

Площадь основания рассчитываем по формуле площади квадрата — квадрат стороны:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

После этого перейдем к нахождению высоты. Для этого нам необходимо рассмотреть прямоугольный (так как основание перпендикулярно высоте) треугольник AMH. AH — половина диагонали квадрата, которая равна √2 его стороны, то есть в нашем случае диагональ равна 4√2, ну а половина — AH = 2√2. Зная гипотенузу и один из катетов, найдем высоту:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

После этого легко вычисляем объем:

V = 1/3 • 16 •3 = 16

Вариант 16МБ5

В треугольной пирамиде АВСD ребра АВ, АС и АD взаимно перпендикулярны. Найдите объем этой пирамиды, если АВ=2, АС=15 и AD=11.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения
  1. Записываем формулу для определения объема пирамиды.
  2. Находим площадь основания по формуле для площади прямоугольного треугольника.
  3. Показываем, что высота пирамиды совпадает с ребром AD. Вычисляем искомый объем.
Решение:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Т.к. в основании пирамиды лежит прямоугольный треугольник с катетами АВ и АС (по условию АВ перпендикулярно АС), то Sосн=АВ·АС/2.

Т.к. AD перпендикулярно АВ и АС и пересекается с ними в одной точке, то (по признаку перпендикулярности прямой и плоскости) AD перпендикулярно плоскости основания пирамиды.

Значит AD – высота пирамиды. Т.е. Н=AD=11.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Вариант 16МБ6

Сторона основания правильной треугольной призмы АВСА1В1С1 равна 2, а высота этой призмы равна 4√3. Найдите объем призмы АВСА1В1С1.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения
  1. Находим площадь основы призмы через формулу для площади правильного треугольника.
  2. Записываем формулу для объема призмы. Подставляем в нее числовые данные, вычисляем искомую величину.
Решение:

Площадь правильного треугольника равна:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Здесь а – сторона основания призмы.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Объем призмы: V=Sh, где h – высота призмы, S– площадь ее основания (в нашем случае – площадь правильного треугольника, лежащего в основании).

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Вариант 16МБ7

Объем конуса равен 25π, а его высота равна 3. Найдите радиус основания конуса.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения
  1. Записываем формулу для объема конуса. Из нее выражаем площадь основания.
  2. Площадь основания расписываем по формуле площади круга, поскольку именно круг лежит в основании конуса.
  3. Из этих двух формул выражаем искомую величину. Вычисляем ее.
Решение:

Объем конуса равен:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Площадь круга составляет:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Вариант 16МБ8

Радиус основания цилиндра равен 15, а его образующая равна 14. Сечение, параллельное оси цилиндра, удалено от нее на расстояние, равное 12. Найдите площадь этого сечения.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5
Алгоритм выполнения
  1. Определяем, что образующая цилиндра – это одна из сторон сечения-прямоугольника. Вводим обозначения для точек, которые необходимы для выполнения расчетов. Получаем, что образующая – это отрезок DK.
  2. Делаем дополнительное построение – соединяем точки О и А в основании цилиндра. Получаем прямоугольный ∆АВО.Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5
  3. Из ∆АВО по т.Пифагора находим значение АВ. Этот отрезок – половина AD. Отсюда находим AD.
  4. Зная величину DK и AD, вычисляем площадь сечения-прямоугольника.
Решение:

Поскольку образующая цилиндра и его высота совпадают, то DK=14. Это – одна из сторон прямоугольника, форму которого и имеет сечение.

Найдем 2-ю сторону этого прямоугольника. Из прямоугольного ∆АВО по т.Пифагора АО 2 =АВ 2 +ВО 2 .

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

АО – радиус основания, поэтому АО=15. ВО=12, поскольку ВО – это расстояние от оси до плоскости сечения.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Площадь сечения равна:

Вариант 16МБ9

В прямоугольном параллелепипеде ABCDA1B1C1D1 ребра DA, DC и диагональ DA1 боковой грани равны соответственно 3, 5 и √34. Найдите объем параллелепипеда ABCDA1B1C1D1.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения
  1. Соединяем вершины А1 и D. Получаем прямоугольный ∆А1АD. Из этого треугольника находим АА1.Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5
  2. Записываем формулу для вычисления объема параллелепипеда. Находим значение для объема.
Решение:

Т.к. ABCDA1B1C1D1 параллелепипед, то угол А1АD равен 90 0 . Поэтому ∆А1АD – прямоугольный. Тогда по т.Пифагора А1А 2 +AD 2 =A1D 2 . Отсюда получаем:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Объем параллелепипеда найдем по формуле:

Вариант 16МБ10

Стороны основания правильной треугольной пирамиды равны 16, а боковые ребра равны 17. Найдите площадь боковой поверхности этой пирамиды.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

  1. Записываем формулу для площади боковой поверхности через периметр основания и апофему.
  2. Находим периметр треугольника, лежащего в основании пирамиды.
  3. Доказываем, что апофема является не только высотой, но и медианой для боковой стороны пирамиды.
  4. Из прямоугольного треугольника, образованного апофемой, боковым ребром и половиной стороны основания, по т.Пифагора находим величину апофемы.
  5. Вычисляем площадь боковой поверхности пирамиды.
Решение:

Площадь боковой поверхности пирамиды равна:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Находим периметр основания:

Т.к. пирамида правильная, то ее боковые грани – равнобедренные треугольники. Тогда апофема, которая является высотой боковой грани, проведенной к основанию, является еще и медианой. Значит, SB – медиана и АВ=АС/2=16/2=8.

Из прямоугольного ∆ABS по т.Пифагора АВ 2 +SB 2 =AS 2 .

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Вариант 16МБ11

Найдите объем правильной четырехугольной пирамиды, сторона основания которой равна 8, а боковое ребро равно √41.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

  1. Записываем формулу для объема пирамиды через площадь ее основания и высоту.
  2. Находим площадь основания, учитывая, что в основании пирамиды лежит квадрат.
  3. Находим диагональ квадрата, лежащего в основании, как гипотенузу из ∆АВС. Используем для этого т.Пифагора Делим полученную величину пополам.
  4. Из треугольника, построенного на половине диагонали основания, высоте пирамиды и ее боковом ребре, по т.Пифагора определяем высоту.
  5. Вычисляем объем.
Решение:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Т.к. пирамида правильная, то четырехугольник в ее основании – это квадрат. Поэтому Sосн=а 2 , где а – сторона основания.

Из прямоугольного ∆АВС по т.Пифагора АС 2 =АВ 2 +ВС 2 .

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Из прямоугольного ∆АКS по т.Пифагора AS 2 =AK 2 +SK 2 .

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Значит, объем пирамиды составляет:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Вариант 16МБ12

Два ребра прямоугольного параллелепипеда равны 8 и 5, а объем параллелепипеда равен 280. Найдите площадь поверхности этого параллелепипеда.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения
  1. Записываем формулу для объема прямоугольного параллелепипеда. Из нее выражаем 3-е (неизвестное) ребро. Вычисляем величину этого ребра.
  2. Записываем формулу для площади поверхности. Подставляем в него числовые данные, находим искомое значение.
Решение:

Объем прямоугольного параллелепипеда равен:

V=abc, где a, b, c – ребра. Будем считать, что a и b нам известны, а с – неизвестно.

Тогда из этой формулы:

Площадь поверхности прямоугольного параллелепипеда вычисляется так:

Вариант 16МБ13

Объем конуса равен 24π, а радиус его основания равен 2. Найдите высоту конуса.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения
  1. Записываем формулу для объема конуса. Из нее выражаем высоту.
  2. Записываем формулу для площади круга, лежащего в основе конуса. Вычисляем эту площадь.
  3. Подставляем числовые данные в формулу для объема, вычисляем искомую величину.
Решение:

Объем конуса составляет:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Площадь основания (как площадь круга) равна:

Тогда высота конуса:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Вариант 16МБ14

Основанием четырехугольной пирамиды является прямоугольник со сторонами 3 и 12. Найдите высоту этой пирамиды, если ее объем равен 60.

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Алгоритм выполнения
  1. Записываем формулу для объема пирамиды через площадь ее основания и высоту. Из нее выражаем высоту.
  2. Находим площадь основы-прямоугольника.
  3. Подставляем числовые данные в формулу для высоты, вычисляем искомую величину.
Решение:

Объем пирамиды вычисляется так:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5Отсюда:

Найти объем призмы если в ее основании лежит четырехугольник площадь которого равна 5

Sосн=ab, a и b – стороны прямоугольника, лежащего в основе пирамиды.

🎬 Видео

Найдите объем треугольной призмыСкачать

Найдите объем треугольной призмы

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольника

ЕГЭ-2021: Объём отсечённой призмы | Задание 8: СтереометрияСкачать

ЕГЭ-2021: Объём отсечённой призмы | Задание 8: Стереометрия

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

11 класс, 34 урок, Объем наклонной призмыСкачать

11 класс, 34 урок, Объем наклонной призмы

11 класс, 31 урок, Объем прямой призмыСкачать

11 класс, 31 урок, Объем прямой призмы

Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.Скачать

Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.

Призма - задачи (часть 1) - задание 5 ЕГЭ-профиль-2022Скачать

Призма - задачи (часть 1) - задание 5 ЕГЭ-профиль-2022

Объём призмы | МатематикаСкачать

Объём призмы | Математика

ЕГЭ математика задача 2 вариант 8Скачать

ЕГЭ математика задача 2 вариант 8

🔴 Найдите объём правильной четырёхугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРАСкачать

🔴 Найдите объём правильной четырёхугольной ... | ЕГЭ БАЗА 2018 | ЗАДАНИЕ 16 | ШКОЛА ПИФАГОРА

ПРЯМАЯ ПРИЗМА. ЕГЭ. ЗАДАНИЕ 5. СТЕРЕОМЕТРИЯСкачать

ПРЯМАЯ ПРИЗМА. ЕГЭ. ЗАДАНИЕ 5. СТЕРЕОМЕТРИЯ

Вариант 6 Задание 8 ЕГЭ 2016 Математика, И В Ященко 36 вариантов Решение ОтветСкачать

Вариант 6  Задание 8  ЕГЭ 2016 Математика, И В  Ященко  36 вариантов  Решение  Ответ

Площади фигур. Сохраняй и запоминай!#shortsСкачать

Площади фигур. Сохраняй и запоминай!#shorts
Поделиться или сохранить к себе: