Как найти длину вектора тетраэдра

Онлайн решение Пирамиды по координатам вершин

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

A ( ; ; ), B ( ; ; ),
C ( ; ; ), D ( ; ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать

Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.

Онлайн калькулятор. Модуль вектора. Длина вектора

Этот онлайн калькулятор позволит вам очень просто найти длину вектора для плоских и пространственных задач.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление модуля вектора и закрепить пройденный материал.

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам

Как найти длину вектора тетраэдраРазмерность вектора:

Форма представления вектора:

Инструкция использования калькулятора для вычисления длины вектора

Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)

В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел..

Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Вычисления длины вектора (модуля вектора)

Как найти длину вектора тетраэдра

Например, для вектора a = <ax; ay; az> длина вектора вычисляется cледующим образом:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Нахождение длины вектора. Практическая часть. 9 класс.Скачать

Нахождение длины вектора. Практическая часть. 9 класс.

Длина вектора — основные формулы

Время чтения: 16 минут

Видео:Равенство векторов, Длина вектора.Как найти длину вектора?Скачать

Равенство векторов, Длина вектора.Как найти длину вектора?

Основные понятия вектора

Для того чтобы приступить к разбору формул нахождения длины вектора, необходимо разобраться в основных понятиях и определениях векторов.

Понятие вектора получило широкое распространение в 19 веке, в математических науках, особенно в таком её разделе, как «Комплексные числа».

Вектор — это отрезок с определённой длиной и направлением.

Графическое изображение вектора — отрезок который имеет указание направления в виде стрелки.

Вектор, который будет иметь начальную точку Х и конец в точке А, правильно обозначать ХА, с верхним подчёркиванием или стрелочкой, а также допустимо прописывать одной прописной буквой.

Длину вектора (модуль), определяет числовое значение длины отрезка, имеющего направление. Обозначается длинна двумя вертикальными отрезками |ХА|.

  • Понятие нулевого вектора. Такое название получил вектор, у которого и начало, и конец находятся в одной точке. Обозначение он имеет в виде цифры ноль с верхним подчёркивание, а длина равна нулю.
  • Коллинеарные вектора. Одна прямая может содержать несколько векторов, такие векторы получили название коллинеарных. Также коллинеарными считаются векторы на параллельных прямых.

Как найти длину вектора тетраэдра

  • Сонаправленные. Два коллинеарных вектора считаются сонаправленными, если имеют одно направление.
  • Противоположно направленные. Вектора, с направлениями в разные стороны, и являются коллинеарными, называют противоположно направленными.
  • Компланарные вектора. Такими векторами называют, те что лежат в одной плоскости
    Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Как найти длину вектора тетраэдра

Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Вектора могут находится не только на плоскости, но и в пространстве, от этого расположения будет зависеть какую формулу необходимо использовать для нахождения их длины или модуля. Стоит также отметить, что вектора могут быть равными, при этом они должны иметь одно направление, одинаковые длины и быть коллинеарными. Существует понятие единичного вектора, таким он будет являться если равен единице измерения.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Как найти длину вектора

Модуль вектора а будем обозначать Как найти длину вектора тетраэдра.

Для того чтобы найти модуль вектора или его длину, на плоскости по координатам, необходимо рассмотреть вектор используя прямоугольную декартову систему координат Оxy. Допустим в данной системе будет задан, так вектор Как найти длину вектора тетраэдраимеющий координаты (aₓ ; aᵧ). Получим формулу, которая поможет найти длину вектора Как найти длину вектора тетраэдра, через известные нам координаты aₓ и aᵧ.

На взятой системе координат, от её начала отложим вектор
Как найти длину вектора тетраэдраВ соответствии с проекцией точки А возьмём и определим Aₓ и Aᵧ на оси координат. Рассмотрим полученный прямоугольник ОAₓ и АAᵧ с диагональю ОА.

Как найти длину вектора тетраэдра

Далее используя теорему Пифагора мы получим равенство АО² = ОAₓ² и OAᵧ², отсюда следует

Как найти длину вектора тетраэдра

Теперь в соответствии с определением вектора относительно прямоугольной оси координат выходит, что ОAₓ² = aₓ² и также для OAᵧ² = aᵧ² , а так как на построенном прямоугольнике мы видим, что ОА равна длине вектора Как найти длину вектора тетраэдраполучаем

Как найти длину вектора тетраэдра

Из вышесказанного выходит, что для того чтобы найти длину вектора с точками (aₓ ; aᵧ), выводим следующую формулу:

Как найти длину вектора тетраэдра

Когда вектор Как найти длину вектора тетраэдрадан в формате разложения по координатным векторам Как найти длину вектора тетраэдра, то вычислить его можно по той же формуле Как найти длину вектора тетраэдра, в таком варианте коэффициент aₓ и aᵧ будут выражать в роли координат Как найти длину вектора тетраэдра, в данной системе координат.

Чтобы рассчитать длину Как найти длину вектора тетраэдра= (3, √x), расположенного в прямоугольной системе координат.

Чтобы найти модуль вектора используем ранее приведённую формулу

Как найти длину вектора тетраэдра

Как найти длину вектора тетраэдра

Ответ: Как найти длину вектора тетраэдра

Существуют также формулы вычисления длины вектора в пространстве, они выводятся аналогично тем, что в системе координат на плоскости. Если взять вектор Как найти длину вектора тетраэдра=(aₓ ; aᵧ ; a Как найти длину вектора тетраэдра)

Как найти длину вектора тетраэдра

В таком случае ( AO^2=OA_x^2+OA_y^2+OA_z^2 ) (из рисунка видно, что АО — диагональ прямоугольного параллелепипеда), поэтому

Как найти длину вектора тетраэдра

из определения получаются равенства ОAₓ=aₓ; OAᵧ=aᵧ; OAКак найти длину вектора тетраэдра=a Как найти длину вектора тетраэдра, а значение длины ОА совпадает с длиной вектора, которую необходимо найти. Из этого следует:

Как найти длину вектора тетраэдра

Как найти длину вектора тетраэдра

Ответ: Как найти длину вектора тетраэдра

Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACD

Длина вектора через координаты точек начала и конца

Ранее мы рассмотрели формулы, которые позволят находить длину вектора используя при этом координаты. Рассматривались примеры в трёхмерном пространстве на плоскости. Используя данные формулы можно найти длину вектора, если известны координаты точек его начала и конца.

Возьмём точки с обозначенными координатами начала A(aₓ ; aᵧ) и конца В(bₓ ; bᵧ), из чего следует, что вектор Как найти длину вектора тетраэдраимеет координаты (bₓ-aₓ ; bᵧ-aᵧ), поэтому его длину мы выразим в формуле

Как найти длину вектора тетраэдра

При этом формула вычисления длины вектора Как найти длину вектора тетраэдрадля трёхмерного пространства, с координатами Как найти длину вектора тетраэдраи Как найти длину вектора тетраэдра), будет следующей:

Как найти длину вектора тетраэдра

Для прямой системы координат, найти длину вектора ( overrightarrow) , где A(1,√3) B(-3,1)

Решение
Применив формулу, для нахождения длины вектора, с известными координатами точек начала и конца, в плоской системе координат, выходит:

Как найти длину вектора тетраэдра
Существует второй вариант решения, где формулы применяются по очереди:

Как найти длину вектора тетраэдра
Как найти длину вектора тетраэдра

Ответ: Как найти длину вектора тетраэдра

Найти, решения, при подстановке которых, длина вектора будет равна корню из тридцати, при координатах точек А (0,1,2) и В (5,2,(λ^2))

В первую очередь представим длину вектора в виде формулы.
( left|vecright|=sqrt)
(=sqrt = sqrt)
Теперь приравняем полученное выражение к корню из тридцати и найдём неизвестное значение, решив полученное уравнение.
( sqrt=sqrt )
( 26+left(lambda^2-2right)^2=30 )
( left(lambda^2-2right)^2=4 )
( lambda^2-2=2 ) или ( lambda^2-2=-2 ) ( lambda_1=-2, lambda_2=2, lambda_3=0. )
Ответ: ( lambda_1=-2, lambda_2=2, lambda_3=0. )

Видео:№320. В тетраэдре ABCD точки М, N и К— середины ребер АС. ВС и CD соответственноСкачать

№320. В тетраэдре ABCD точки М, N и К— середины ребер АС. ВС и CD соответственно

Длина вектора по теореме косинусов

Так как бывают случаи, когда не известны координаты точек вектора, необходимо искать другие варианты, при помощи которых можно найти длину вектора. Таким способов может стать применение теоремы косинусов.

К примеру, нам известны длины двух векторов (overrightarrow) и (overrightarrow) , а также угол между ними, или его косинус. При этом необходимо найти длину вектора ( overrightarrow ) , в таком варианте задания необходимо воспользоваться теоремой косинусов, представив треугольник АВС. В данном треугольнике мы будем искать сторону ВС, она и будет равна длине искомого вектора. Подробнее рассмотрим на примере.

Даны длины двух векторов ( overrightarrow) и ( overrightarrow) 2 и 4 соответственно, а угол между ними равен ( frac ) . необходимо найти длину ( overrightarrow).

В нашем примере длины векторов и длины сторон треугольника АМК совпадают. Две из сторон нам известны это АК и АМ, а также известен угол треугольника, находящийся между этими сторонами. Используя теорему косинусов получим:
( KM^2=AK^2+AM^2-2cdot AKcdot AMcdotcosfrac)
(=2^2+4^2-2cdot2cdot4cdotcosfrac)
(=4+16-16cosfrac)
(=20-8=12 )
Получается (KM=sqrt )
Ответ: ( left|overrightarrowright|=sqrt )

Теперь мы видим, что для нахождения длины вектора существует несколько формул, которыми можно воспользоваться в зависимости от известных параметров.

длина вектора формула для трёхмерного пространства;

длина вектора формула по известным координатам начала и конца вектора находящегося пространстве; ( left|vecright|=sqrt) если известны координаты начала и конца вектора на плоскости.

Существует также формула длины вектора перемещения: ( left|vecright|=sqrt) чаще такая формула применима в физике, для того чтобы узнать длину пути материальной точки.

В случае если известен угол, между двумя векторами, можно использовать теорему Пифагора.

Видео:Площадь параллелограмма, построенного на данных векторахСкачать

Площадь параллелограмма, построенного на данных векторах

Применение векторов в других сферах

Понятие и вычисление вектора важно не только в математике, но и других науках:

  • в физике. Для визуального изображения таких понятий как скорость, сила, ускорение и т.д. А также векторы помогают моделировать физические процессы;
  • в химии. Для изображения химических процессор. При помощи векторов изображают движение электронов и других частиц;
  • в биологии. Биологические процессы, также имеют графическое изображение при помощи векторов. К примеру перенос паразитов;
  • географии. Вектором обозначается движение воздушных масс, или течение реки;

Векторы используются не только в науках, но и различных отраслях и профессиях. В судоходстве и аэрофлоте, архитектуре и конструировании, а также многих других областях. Для того чтобы найти длину вектора, мы можем использовать одну из формул, в зависимости от того, что нам о нём известно, и в каком пространстве или плоскости находится неизвестный вектор.

📽️ Видео

Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

10 класс, 12 урок, ТетраэдрСкачать

10 класс, 12 урок, Тетраэдр

Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Найти длину вектора и середину отрезкаСкачать

Найти длину вектора и середину отрезка

Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Аналитическая геометрия, 1 урок, Векторы в пространстве

Решение пирамидыСкачать

Решение пирамиды

Длина вектора через координаты. 9 класс.Скачать

Длина вектора через координаты. 9 класс.

Найти длину вектора в прямоугольникеСкачать

Найти длину вектора в прямоугольнике

№369. Медианы грани ABC тетраэдра ОABC пересекаются в точке М. Разложите вектор ОАСкачать

№369. Медианы грани ABC тетраэдра ОABC пересекаются в точке М. Разложите вектор ОА

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

МОДУЛЬ ВЕКТОРА длина вектора 10 и 11 классСкачать

МОДУЛЬ ВЕКТОРА длина вектора 10 и 11 класс
Поделиться или сохранить к себе: