Полуокружность сумма градусных мер дуг окружности

Дуга окружности. Полуокружность определение. Длина дуги окружности. Угол и дуга окружности

Что такое дуга окружности?

Дугу окружности принято обозначать тремя точками: две точки – это концы дуги и одна произвольная промежуточная точка. Пример дуги: Полуокружность сумма градусных мер дуг окружности

На картинке представлены две дуги: ACB и ADB.

Полуокружность определение

На картинке ACB – полуокружность: Полуокружность сумма градусных мер дуг окружности

Градусная мера дуги окружности

Рассмотрим три случая.

Первый случай

Градусной мерой дуги ACB является градусная мера центрального угла AOB: Полуокружность сумма градусных мер дуг окружности

Второй случай

Градусной мерой дуги BED является градусная мера центрального угла BOD (на рисунке выше), в данном случае это 180 0 , т.е. развернутый угол.

Третий случай

Градусной мерой большей дуги окружности ACB рассчитывается по формуле: 360 градусов минус величина угла AOB. Пример: пусть угол AOB = 90 0 , тогда градусная мера дуги ACB равна 360 0 — 90 0 = 270 0 . Полуокружность сумма градусных мер дуг окружности

А чему равна сумма градусных мер дуг ADB и ACB?

Градусная мера дуги ADB равна 90 0 по условию.

Сумма градусных мер дуг ADB и ACB равна 90 0 + 270 0 = 360 0 .

Это и понятно, ведь эти две дуги охватывают всю окружность, а окружности соответсвуют 360 0 .

Видео:72. Градусная мера дуги окружностиСкачать

72. Градусная мера дуги окружности

Геометрия

Именная карта банка для детей
с крутым дизайном, +200 бонусов

Закажи свою собственную карту банка и получи бонусы

План урока:

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Центральный угол и градусная мера дуги

Любые две точки на окружности разбивают ее на две дуги. Чтобы отличать эти дуги, на каждой из них ставят точку, которую и указывают в обозначении дуги:

Здесь красным цветом показана⋃АСВ, а синим – ⋃ADB. Однако иногда для простоты указывают только концы дуги, то есть используют обозначение ⋃AВ. Это делается тогда, когда ясно, о какой дуге окружности идет речь. Обычно всегда подразумевается та дуга, которая меньше.

Можно заметить, что дуги отличаются по размеру, поэтому возникает потребность их измерения. Для этого используют такое понятие, как градусная мера дуги.

Для ее определения необходимо соединить концы дуги с центром окруж-ти. В результате получаются радиусы, которые пересекаются в центре окружности. Угол между ними именуется центральным углом окруж-ти.

Для каждой дуги можно построить единственный центральный угол, поэтому логично измерять дугу с помощью такого угла. Правда, обратное неверно. На рисунке видно, что центральному углу ∠АОВ соответствует сразу две дуги: ⋃АСВ и ⋃АDB:

Поэтому условно считают, градусная мера той из двух дуг, которая меньше, как раз и равна центральному углу:

Дуги, также как отрезки или углы, можно складывать или вычитать. Например, пусть есть две дуги, ⋃AВ и ⋃ВС, чьи градусные меры составляют 40° и 30°.

Как найти ⋃АС? Ей соответствует центральный угол ∠АОС, который в свою очередь равен сумме ∠АОВ и ∠ВОС:

Диаметр делит окруж-ть на две равные друг другу дуги, которые называются полуокружностями. При этом диаметр окружности можно рассматривать как угол между двумя радиусами, равный 180°. Получается, что градусная мера полуокружности составляет 180°:

Вместе две полуокружности образуют полную окруж-ть. Получается, что градусная мера всей окруж-ти составляет 180° + 180° = 360°.

Этот факт известен и из жизни – когда кто-то делает полный оборот вокруг своей оси, говорят, что он повернулся на 360°. Теперь мы можем вернуться к случаю, когда две точки делят окруж-ть на две неравные друг другу дуги. Градусная мера меньшей из них будет равна величине соответствующего центрального угла (обозначим его как α). В сумме две дуги должны дать 360°. Значит, градусная мера большей дуги будет составлять 360° – α:

Задание. Точки А, В, С и D лежат на одной окруж-ти. Известно, что ⋃АСВ составляет 107°. Какова величина ADB?

Решение. Вместе дуги ⋃АСВ и ⋃АDВ образуют полную окруж-ть, поэтому их сумма равна 360°. Это позволяет составить уравнение и найти из него ⋃АDB:

Задание. Найдите величину ∠АОС на рисунке, если известны ⋃AВ и ⋃ВС:

Решение. Сначала найдем ⋃АС, учтя, что все три дуги, показанные на рисунке, в сумме составляют 360°:

Для доказательства построим две одинаковые хорды AВ и СD в окруж-ти и соединим их концы с центром:

В результате получились ∆АОВ и ∆ОСD. У них равны все три стороны, значит, сами эти треугольники равны. Тогда

∠COD = ∠AOB

Но эти углы – центральные для дуг ⋃AВ и ⋃CD. Получается, что у этих дуг одинаковы их градусные меры, поэтому они также равны, ч. т. д.

Примечание. Всякая хорда окружности разбивает ее на две дуги – большую и меньшую. В данном правиле говорится именно равенстве меньших дуг.

Задание. На окруж-ти отмечены точки А, В и С так, что хорды AВ, ВС и АС равны. Найдите угол между радиусами окружности АО и ВО.

Дуги ⋃AВ, ⋃ВС и ⋃АС стянуты равными хордами AВ, ВС и АС. Значит, они одинаковы. Но в сумме эти три дуги образуют окруж-ть величиной в 360°. Значит, каждая из этих дуг втрое меньше:

⋃AВ = ⋃BC = ⋃AC = 360°:3 = 120°

∠АОВ – центральный для ⋃AВ, значит, он равен ее градусной мере, то есть он составляет 120°.

Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Вписанный угол

В окруж-ти можно построить ещё один угол, который именуют вписанным углом. Его отличие от центрального заключается в том, что его вершина лежит на окруж-ти, а не в ее центре. Сторонами же вписанного угла являются хорды окруж-ти.

Здесь дуга ⋃ВС находится внутри угла, а ее концы лежат на его сторонах. В таких случаях говорят, что ∠ВАС опирается на дугу ВС. Оказывается, что между величиной вписанного угла и дугой, на которую он опирается, есть взаимосвязь.

Обозначим вписанный угол ∠СAВ буквой α. Так как радиусы АО и ОС одинаковы, то ∆АОС – равнобедренный, и тогда углы при его основании будут одинаковы:

∠СОВ – внешний для ∆АОС. Напомним, что такой угол равен сумме тех 2 углов треуг-ка, которые с ним не смежны. В частности, в данном случае можно записать

∠СОВ = ∠OCA = ∠OAC = α + α = 2α

Но этот же угол – центральный, и его величина равна ⋃ВС:

Получается, что дуга вдвое больше вписанного угла.

Далее рассмотрим случай, когда диаметр, проведенный из вершины вписанного угла, делит его на две части:

В этом случае вписанный угол ∠СAВ можно представить как сумму углов ∠САD (обозначен как α)и ∠ВАD (обозначен как β). Мы уже доказали, что дуги, на которые опираются эти углы, вдвое больше самих углов:

Осталось рассмотреть третий случай, при котором обе стороны вписанного угла ∠ВАС лежат по одну сторону от диаметра:

Если здесь обозначить ∠САD как α, а ∠ВАD как β, то интересующий нас ∠СAВ можно представить как их разность:

Итак, во всех трех возможных случаях вписанный угол оказывается вдвое меньше дуги, на которую он опирается.

Задание. Найдите ∠ВАС на рисунке:

Задание. Найдите вписанный ∠AВС, сели прилегающие к нему дуги ⋃AВ и ⋃ВС равны 100° и 128°.

Решение. В сумме дуги ⋃АС, ⋃ВС и ⋃AВ образуют окруж-ть, поэтому их сумма составляет 360°. Тогда можно найти ⋃АС:

Задание. Найдите дугу SM на рисунке:

Решение. Сначала найдем дугу ⋃MN, она вдвое больше соответствующего ей вписанного угла:

⋃NM = 2*NSM = 2*35° = 70°

Заметим, что ⋃SN– это полуокружность, то есть она составляет 180°. При этом ⋃SM и ⋃MN вместе как раз образуют эту полуокружность, то есть их сумма также составляет 180°. Значит, ⋃МS можно найти, вычтя из полуокружности ⋃MN:

⋃MS = ⋃SN — ⋃MN = 180° — 70° = 110°

Заметим, что для одной дуги можно построить несколько вписанных углов. Каждый из них будет равен половине дуги, то есть все эти углы окажутся одинаковыми.

Задание. Найдите ∠АСD на рисунке:

Решение. Так как ∠ACD и ∠ABD опираются на одну дугу ⋃AD, то они должны быть одинаковыми:

∠ACD = ∠ABD = 63°

Задание. Докажите, что две дуги, находящиеся между двумя параллельными секущими окруж-ти, равны друг другу.

Нам надо доказать, что ⋃AВ и ⋃CD равны, если АС||BD. Проведем секущую ВС:

∠СВD и ∠АСВ равны, ведь они накрест лежащие. Получается, что ⋃AВ и ⋃CD являются основаниями равных вписанных углов. Отсюда вытекает, что эти дуги должны быть равными.

Напомним, что диаметр разбивает окруж-ть на две дуги по 180°. Отсюда можно сделать вывод – любой угол, опирающийся на полуокружность, должен составлять 180°:2 = 90°:

Задание. Диаметр окруж-ти AВ равен 17. Хорда ВС имеет длину 8. Какова длина хорды АС?

Так как ∠АСВ опирается на диаметр AВ, то он прямой. Значит, и ∆АСВ – прямоугольный, причем диаметр AВ в нем – гипотенуза. Неизвестный катет можно найти по теореме Пифагора:

Задание. Окруж-ть разбита на две дуги, ⋃AВС и ⋃СDA. Известно, что ∠AВС = 72°. Найдите ADC.

Зная ∠AВС, мы легко найдем дугу ⋃ADC, она вдвое больше опирающегося на нее вписанного угла:

Видео:Градусная мера дуги окружности | Геометрия 7-9 класс #70 | ИнфоурокСкачать

Градусная мера дуги окружности | Геометрия 7-9 класс #70 | Инфоурок

Углы между хордами и секущими

До этого мы рассматривали простые углы в окруж-ти, вершины которых лежали либо на самой окруж-ти, либо в ее центре. Однако иногда хорды и секущие пересекаются в другой точке, либо внутри, либо вне окруж-ти. Рассмотрим подобные задачи.

Более прост случай, когда необходимо найти угол между двумя пересекающимися хордами. Пусть хорды при пересечении образовали дуги ⋃AВ и ⋃СD величиной α и β. Каков угол между ними?

Проведем ещё одну хорду АD. В результате получим вписанные ∠САD и ∠ADB, которые будут равны половинам от соответствующих дуг, то есть α/2 и β/2. Интересующий нас ∠СPD оказывается внешним для ∆APD, и потому равен сумме двух углов в ∆APD (тех, которые с ним не смежны), то есть он составляет величину α/2 + β/2:

Величину α/2 + β/2 можно записать и иначе, вынеся множитель 1/2 за скобки:

Эту величину можно назвать полусуммой дуг, на которые опирается интересующий нас угол.

Задание. Найдите ∠МКВ на рисунке:

Решение. Интересующий нас угол опирается на хорды величиной 38° и 42°. Значит, он равен половине от их суммы:

∠MKB = (42° + 38°)/2 = 80°/2 = 40°

В более сложном случае необходимо найти угол между секущими, которые пересекаются вне окруж-ти. При этом известны дуги, образованные этими секущими:

Снова проведем хорду АD, чтобы у нас получились два вписанных угла, ∠ADB и ∠СAD, которые соответственно будут иметь величину β/2 и α/2:

Теперь уже ∠САD оказывается внешним для ∆ADK, а потому он является суммой двух других углов:

В итоге получили, что угол между секущими составляет половину от разности дуг, которые они отсекают от окруж-ти.

Задание. Найдите на рисунке величину∠К, если ⋃AВ и ⋃СD соответственно равны 42° и 130°:

Решение. В этой задаче просто используем доказанную теорему об углах между секущими. Искомый угол составляет половину от разности дуг, заключенных между секущими:

∠K = (130° — 42°):2 = 88°/2 = 44°

Видео:Градусная мера дуги окружностиСкачать

Градусная мера дуги окружности

Теорема о произведении отрезков хорд

Можно заметить, что при пересечении двух хорд образуется пара подобных треугольников. Пусть хорды ADи ВС пересекаются в точке K. Добавим хорды AВ и СD и получим ∆AВК и ∆КСD:

На дугу ⋃BD опираются вписанные углы∠А и ∠С, значит, они одинаковы. Также на одну дугу АС опираются ∠D и∠В, поэтому и они одинаково. Равенство двух углов уже означает, что треугольники подобны по первому признаку подобия (дополнительно можно заметить, что ∠АКВ и ∠СКD равны как вертикальные углы).

Из подобия ∆AВК и ∆СКD вытекает пропорция между их сторонами:

Перемножив члены пропорции крест накрест, получим соотношение:

В результате нам удалось доказать следующее утверждение:

Задание. Хорды AВ и CD пересекаются в точке М. Известны, что АМ = 9, МВ = 3, МС = 2. Какова длина отрезка МD?

Хорда AВ разбивается на отрезки АМ и МВ, а хорда CD – на отрезки СМ и МD. Произведения этих отрезков одинаковы:

Подставим в это равенство известные величины

Рассмотрим ещё одну геометрическую конструкцию. Пусть из некоторой точки А к окруж-ти проведена как касательная к окружности АК, так и секущая, пересекающая окруж-ть в точках В и С:

Какие здесь есть взаимосвязи между углами и длинами отрезков? Для начала проведем хорды ВК и СК, а также радиусы ОК и ОВ. Обозначим буквой α угол ∠ВСК. Он вписанный, поэтому дуга, на которую он опирается (это ⋃ВК), вдвое больше и равна 2α. Тогда и центральный угол ∠ВОК также составляет 2α:

Теперь исследуем ∆ВОК. Он равнобедренный (ВО и ОК – одинаковые радиусы), поэтому углы при его основании совпадают:

Итак, углы при основании ∆ОВК, в частности ∠ОКВ, равны 90° – α. Заметим, что ∠ОКА – прямой, так как образован радиусом ОК и касательной АК, при этом он состоит из двух углов, ∠АКВ и ∠ВКО. Это позволяет найти ∠АКВ:

В результате мы получили важный промежуточный результат – угол между касательной и хордой, проведенной из точки касания, вдвое меньше образующейся при этом дуги.

Вернемся к картинке с секущей. Изначально как α мы обозначили ∠ВСК, но в результате получили, что и ∠АКВ = α.

Рассмотрим ∆AВК и ∆САК. У них есть общий∠А, а также одинаковые ∠AКВ и ∠ВСК, которые отмечены буквой α. Значит, ∆AВК и ∆САК подобны, поэтому мы имеем право записать пропорцию между его сторонами:

Здесь отрезок АС можно назвать секущей, а AВ – ее внешней частью. Тогда выведенное отношение можно сформулировать так:

Решение. Сначала находим длину всей секущей, пользуясь доказанной теоремой:

Решение. Проведем из точки А ещё и касательную АК к окруж-ти:

Величину квадрата касательной АК можно найти, используя секущую АС. Сначала вычислим длину АС:

Видео:Длина дуги окружности. 9 класс.Скачать

Длина дуги окружности. 9 класс.

Задачи на квадратной решетке

Рассмотрим несколько несложных задач, часто встречающихся на экзаменах.

Задание. Найдите ∠AВС на рисунке:

Решение. Здесь следует заметить, что расстояние между А и С составляет 8 клеток, при этом в окруж-ть как раз можно вписать квадрат со стороной 8.

Такой квадрат разобьет окруж-ть на 4 дуги, причем так как эти дуги опираются на хорды одинаковой длины, то они и сами равны. Вся окруж-ть составляет 360°, значит, каждая из этих дуг составляет 360°:4 = 90°. ∠AВС – вписанный, то есть он составляет половину дуги, на которую он опирается, а это⋃АС, равная 90°. Тогда

Задание. Найдите ∠AВС, используя рисунок:

Решение. Используя рассуждения из предыдущей задачи, легко определить, что∠А составляет 45°.При этом ∆AВС – равнобедренный, и ВС – его основание. Это следует хотя бы из того факта, что высота АН делит сторону ВН пополам.

Углы∠В и ∠С одинаковы, так как лежат при основании равнобедренного треуг-ка. Найдем их, используя тот факт, что все 3 угла в ∆AВС составляют в сумме 180°:

Задание. Вычислите ∠AВС:

Решение. Снова в окруж-ть можно вписать квадрат со стороной 8 клеток. Из этого следует что ⋃АВС составляет 90° (показана фиолетовым цветом):

Но ∠АВС опирается на синюю дугу. Так как вместе фиолетовая и синяя дуга составляют окружность, равную 360°, то синяя дуга должна быть равна 360° – 90° = 270°. ∠АВС как вписанный будет вдвое меньше, то есть он равен 270°:2 = 135°.

Задание. Чему равен ∠AВС на рисунке?

Если вписать в окруж-ть квадрат то он разобьет окруж-ти на дуги по 90°. В свою очередь точка А является серединой такой дуги, то есть она разбивает ее на две дуги по 45°.

∠AВС как вписанный будет вдвое меньше, то есть он равен 22,5°.

Видео:Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)Скачать

Геометрия 8 класс (Урок№26 - Градусная мера дуги окружности. Центральные углы.)

§ 2. Центральные и вписанные углы

Градусная мера дуги окружности

Отметим на окружности две точки А и В. Они разделяют окружность на две дуги. Чтобы различать эти дуги, на каждой из них отмечают промежуточную точку, например L и М (рис. 214). Обозначают дуги так: Полуокружность сумма градусных мер дуг окружностиALB и Полуокружность сумма градусных мер дуг окружностиAMВ. Иногда используется обозначение без промежуточной точки: Полуокружность сумма градусных мер дуг окружностиAB (когда ясно, о какой из двух дуг идёт речь).

Полуокружность сумма градусных мер дуг окружности

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром окружности. На рисунке 215, а изображены две полуокружности, одна из которых выделена цветом.

Полуокружность сумма градусных мер дуг окружности

Угол с вершиной в центре окружности называется её центральным углом. Пусть стороны центрального угла окружности с центром О пересекают её в точках А к В. Центральному углу АОВ соответствуют две дуги с концами А и В (рис. 215). Если ∠АОВ развёрнутый, то ему соответствуют две полуокружности (рис. 215, а). Если ∠АОВ неразвёрнутый, то говорят, что дуга АВ, расположенная внутри этого угла, меньше полуокружности. На рисунке 215, б эта дуга выделена цветом. Про другую дугу с концами А и В говорят, что она больше полуокружности (дуга ALB на рисунке 215, в).

Дугу окружности можно измерять в градусах. Если дуга А В окружности с центром О меньше полуокружности или является полуокружностью, то её градусная мера считается равной градусной мере центрального угла АОВ (см. рис. 215, а, б). Если же дуга АВ больше полуокружности, то её градусная мера считается равной 360° — ∠АОВ (см. рис. 215, в).

Отсюда следует, что сумма градусных мер двух дуг окружности с общими концами равна 360°.

Градусная мера дуги АВ (дуги ALB), как и сама дуга, обозначается символом Полуокружность сумма градусных мер дуг окружностиАВ (Полуокружность сумма градусных мер дуг окружностиALB). На рисунке 216 градусная мера дуги САВ равна 145°. Обычно говорят кратко: «Дуга САВ равна 145°» и пишут: Полуокружность сумма градусных мер дуг окружностиCAB =145°. На этом же рисунке Полуокружность сумма градусных мер дуг окружностиADB = 360° — 115° = 245°, Полуокружность сумма градусных мер дуг окружностиCDB = 360° — 145° = 215°, Полуокружность сумма градусных мер дуг окружностиDВ = 180°.

Полуокружность сумма градусных мер дуг окружности

Теорема о вписанном угле

Угол, вершина которого лежит на окружности, а стороны пересекают, окружность, называется вписанным углом.

На рисунке 217 угол АВС вписанный, дуга АМС расположена внутри этого угла. В таком случае говорят, что вписанный угол АВС опирается на дугу АМС. Докажем теорему о вписанном угле.

Полуокружность сумма градусных мер дуг окружности

Вписанный угол измеряется половиной дуги, на которую он опирается.

Пусть ∠ABC — вписанный угол окружности с центром О, опирающийся на дугу АС (рис. 218). Докажем, что Полуокружность сумма градусных мер дуг окружностиРассмотрим три возможных случая расположения луча ВО относительно угла АВС.

1) Луч ВО совпадает с одной из сторон угла АВС, например со стороной ВС (рис. 218, а). В этом случае дуга АС меньше полуокружности, поэтому ∠AOC = Полуокружность сумма градусных мер дуг окружностиAC. Так как угол АОС — внешний угол равнобедренного треугольника АВО, а углы 1 и 2 при основании равнобедренного треугольника равны, то

Полуокружность сумма градусных мер дуг окружности

Отсюда следует, что

2∠1 = Полуокружность сумма градусных мер дуг окружностиAC или Полуокружность сумма градусных мер дуг окружности

2) Луч ВО делит угол АВС на два угла. В этом случае луч ВО пересекает дугу АС в некоторой точке D (рис. 218, б). Точка D разделяет дугу АС на две дуги: Полуокружность сумма градусных мер дуг окружностиAD и Полуокружность сумма градусных мер дуг окружностиDC. По доказанному в п. 1)

Полуокружность сумма градусных мер дуг окружности

Складывая эти равенства, получаем:

Полуокружность сумма градусных мер дуг окружности

3) Луч ВО не делит угол ABC на два угла и не совпадает со стороной этого угла. Для этого случая, пользуясь рисунком 218, в, проведите доказательство самостоятельно.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 219).

Полуокружность сумма градусных мер дуг окружности

Вписанный угол, опирающийся на полуокруж ность, — прямой (рис. 220).

Полуокружность сумма градусных мер дуг окружности

Используя следствие 1, докажем теорему о произведении отрезков пересекающихся хорд.

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Пусть хорды АВ и CD пересекаются в точке Е (рис. 221). Докажем, что

Полуокружность сумма градусных мер дуг окружности

Рассмотрим треугольники ADE и СВЕ. В этих треугольниках углы 1 и 2 равны, так как они вписанные и опираются на одну и ту же дугу BD, а углы 3 и 4 равны как вертикальные. По первому признаку подобия треугольников ΔADE ∼ ΔCBE. Отсюда следует, что Полуокружность сумма градусных мер дуг окружностиили АЕ • BE = СЕ • DE. Теорема доказана.

Задачи

649. Начертите окружность с центром О и отметьте на ней точку А. Постройте хорду АВ так, чтобы: a) ∠AOB = 60°; б) ∠AOB = 90°; в) ∠AOB = 120°; г) ∠AOB = 180°.

650. Радиус окружности с центром О равен 16. Найдите хорду АВ, если: a) ∠AOB = 60°; б) ∠AOB = 90°; в) ∠AOB =180°.

651. Хорды АВ и CD окружности с центром О равны.

а) Докажите, что две дуги с концами А и В соответственно равны двум дугам с концами С и D.
б) Найдите дуги с концами С и D, если ∠AOB = 112°.

652. На полуокружности АВ взяты точки С и D так, что Полуокружность сумма градусных мер дуг окружностиАС = 37°, Полуокружность сумма градусных мер дуг окружностиBD = 23°. Найдите хорду CD, если радиус окружности равен 15см.

653. Найдите вписанный угол АВС, если дуга АС, на которую он опирается, равна: а) 48°; б) 57°; в) 90°; г) 124°; д) 180°.

654. По данным рисунка 222 найдите х.

Полуокружность сумма градусных мер дуг окружности

655. Центральный угол АОВ на 30° больше вписанного угла, опирающегося на дугу АВ. Найдите каждый из этих углов.

656. Хорда АВ стягивает дугу, равную 115°, а хорда АС — дугу в 43°. Найдите угол ВАС.

657. Точки А и В разделяют окружность на две дуги, меньшая из которых равна 140°, а большая точкой М делится в отношении 6 : 5, считая от точки А. Найдите угол ВАМ.

658. Через точку А к данной окружности проведены касательная АВ (В — точка касания) и секущая AD, проходящая через центр О (D — точка на окружности, О лежит между А и D). Найдите ∠BAD и ∠ADB, если Полуокружность сумма градусных мер дуг окружностиBD = 110°20′.

659. Докажите, что градусные меры дуг окружности, заключённых между параллельными хордами, равны.

660. Через точку, лежащую вне окружности, проведены две секущие, образующие угол в 32°. Большая дуга окружности, заключённая между сторонами этого угла, равна 100°. Найдите меньшую дугу.

661. Найдите острый угол, образованный двумя секущими, проведёнными из точки, лежащей вне окружности, если дуги, заключённые между секущими, равны 140° и 52°.

662. Хорды АВ и CD окружности пересекаются в точке Е. Найдите угол ВЕС, если Полуокружность сумма градусных мер дуг окружностиAD = 54°, Полуокружность сумма градусных мер дуг окружностиBC = 70°.

663. Отрезок АС — диаметр окружности, АВ — хорда, МА — касательная, угол МАВ острый. Докажите, что ∠MAB = ∠ACB.

664. Прямая AM — касательная к окружности, АВ — хорда этой окружности. Докажите, что угол МАВ измеряется половиной дуги АВ, расположенной внутри угла МАВ.

665. Вершины треугольника АВС лежат на окружности. Докажите, что если АВ — диаметр окружности, то ∠C > ∠A и ∠C > ∠B.

666. Хорды АВ и CD пересекаются в точке Е. Найдите ED, если:

а) АЕ = 5, ВЕ = 2, СЕ = 2,5; б) АЕ = 16, ВЕ = 9, CE = ED;
в) АЕ = 0,2, BE = 0,5, СЕ = 0,4.

667. Диаметр АА1 окружности перпендикулярен к хорде ВВ1 и пересекает её в точке С. Найдите ВВ1 если АС = 4 см, СА1 = 8 см.

668. Докажите, что перпендикуляр, проведённый из какой-нибудь точки окружности к диаметру, есть среднее пропорциональное для отрезков, на которые основание перпендикуляра делит диаметр.

669. Пользуясь утверждением, сформулированным в задаче 668, постройте отрезок, равный среднему пропорциональному для двух данных отрезков.

670. Через точку А проведены касательная АВ (В — точка касания) и секущая, которая пересекает окружность в точках Р и Q. Докажите, что АВ 2 = АР • AQ.

671. Через точку А проведены касательная АВ (В — точка касания) и секущая, которая пересекает окружность в точках С и D. Найдите CD, если: а) АВ = 4 см, АС = 2 см; б) АВ = 5 см, AD = 10 см.

672. Через точку А, лежащую вне окружности, проведены две секущие, одна из которых пересекает окружность в точках В1 и С1, а другая — в точках В2 и С2. Докажите, что АВ1 • АС1 = АВ2 • АС2.

673. К данной окружности постройте касательную, проходящую через данную точку вне окружности.

Пусть даны окружность с центром О и точка А вне этой окружности. Допустим, что задача решена и АВ — искомая касательная (рис. 223). Так как прямая АВ перпендикулярна к радиусу ОВ, то решение задачи сводится к построению точки В окружности, для которой ∠ABO прямой. Эту точку можно построить следующим образом: проводим отрезок ОА и строим его середину О1. Затем проводим окружность с центром в точке Ох радиуса О1А. Эта окружность пересекает данную окружность в двух точках: В1В1. Прямые АВ и АВ1 — искомые касательные, так как АВ ⊥ ОВ и АВ1 ⊥ ОВ1. Действительно, углы АВО и АВ1O, вписанные в окружность с центром О1, опираются на полуокружности, поэтому они прямые. Очевидно, задача имеет два решения.

🎥 Видео

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

8 класс, 34 урок, Теорема о вписанном углеСкачать

8 класс, 34 урок, Теорема о вписанном угле

Математика, 8 класс: Центральный угол. Градусная мера дуги окружностиСкачать

Математика, 8 класс: Центральный угол. Градусная мера дуги окружности

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 классСкачать

Радианная Мера Угла - Как Переводить Градусы в Радианы // Урок Алгебры 10 класс

Градусная мера дуги окружности. Центральные углыСкачать

Градусная мера дуги окружности. Центральные углы

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружности

Вписанные и центральные углыСкачать

Вписанные и центральные углы

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСССкачать

Урок по теме ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ 8 КЛАСС

Градусная мера угла. 9 класс.Скачать

Градусная мера угла. 9 класс.

Центральный угол в окружностиСкачать

Центральный угол в окружности

Геометрия. 8 класс. Урок 11 "Вписанные углы"Скачать

Геометрия. 8 класс. Урок 11 "Вписанные углы"

Геометрия. 8 класс. Урок 4 "Вписанные углы"Скачать

Геометрия. 8 класс. Урок 4 "Вписанные углы"
Поделиться или сохранить к себе: