Найдите образы базисных векторов

Онлайн калькулятор. Разложение вектора по базису.

Этот онлайн калькулятор позволит вам очень просто разложить вектор по базисным векторам.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач и закрепить пройденый материал.

Видео:Ядро и образ линейного оператораСкачать

Ядро и образ линейного оператора

Калькулятор для разложения вектора по базисным векторам

Выберите размерность пространства

Количество координат в векторе:

Введите значение базисных векторов:

Введите значение вектора, который необходимо разложить по базису:

Инструкция использования калькулятора для разложение вектора по базисным векторам

  • Для того чтобы разложить вектор по базисным векторам онлайн:
  • выберите необходимую вам размерность пространства (количество координат в векторе);
  • введите значения базисных векторов;
  • введите значения вектора который нужно разложить по базису;
  • Нажмите кнопку «Разложить вектор по базису» и вы получите детальное решение задачи.

Ввод данных в калькулятор для разложение вектора по базисным векторам

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора разложение вектора по базисным векторам

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Теория. Разложение вектора по базису

Чтобы разложить, вектор b по базисным векторам a1 , . an , необходимо найти коэффициенты x 1, . xn , при которых линейная комбинация векторов a1 , . an равна вектору b .

Коэффициенты x 1, . xn будут координатами вектора b в базисе a1 , . an .

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Координаты вектора в базисе

Пример №1 . Даны векторы ε1(2;1;3), ε2(3;-2;1), ε3(1;-3;-4), X(7;0;7). Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора X в этом базисе.
Решение. Данная задача состоит из двух частей. Сначала необходимо проверить, образуют ли векторы базис. Векторы образуют базис, если определитель, составленный из координат этих векторов, отличен от нуля, в противном случае вектора не являются базисными и вектор X нельзя разложить по данному базису.
Вычислим определитель матрицы:

E =
213
3-21
1-3-4

∆ = 2*((-2)*(-4) — (-3)*1) — 3*(1*(-4) — (-3)*3) + 1*(1*1 — (-2)*3) = 14
Определитель матрицы равен ∆ =14
Так как определитель отличен от нуля, то векторы образуют базис, следовательно, вектор X можно разложить по данному базису. Т.е. существуют такие числа α1α2α3, что имеет место равенство:
X = &#9451ε1 + &#9452ε2 + &#9453ε3
Запишем данное равенство в координатной форме:
(7;0;7) = α(2;1;3) + α(3;-2;1) + α(1;-3;-4)
Используя свойства векторов, получим следующее равенство:
(7;0;7) = (2α1;1α1;3α1😉 + (3α2;-2α2;1α2😉 + (1α3;-3α3;-4α3😉
(7;0;7) = (2α1 + 3α2 + 1α3;1α1 -2α2 -3α3;3α1 + 1α2 -4α3)
По свойству равенства векторов имеем:
1 + 3α2 + 1α3 = 7
1 -2α2 -3α3 = 0
1 + 1α2 -4α3 = 7
Решаем полученную систему уравнений методом Гаусса или методом Крамера.
Ответ:

X =
2
1
0

X = 2ε1 + ε2

В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.

Пример №2 . В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.
a1=(1;5;3), a2=(2;1;-1), a3=(4;2;1), a4=(17;13;4).

Видео:Координаты в новом базисеСкачать

Координаты в новом базисе

Матрица линейного оператора примеры

Видео:Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

Построение матрицы по заданной формуле отображения.

Пусть отображение задано с помощью формулы:

Найдите образы базисных векторов

то есть для координат произвольного исходного вектора определены координаты его образа. Тогда, рассматривая вместо произвольного вектора x вектор Найдите образы базисных векторов, найдём его образ, это будет вектор Найдите образы базисных векторов. Для этого в формуле, задающей образ вектора, полагаем Найдите образы базисных векторов, Найдите образы базисных векторов,…, Найдите образы базисных векторов. Аналогично находим образы для Найдите образы базисных векторов,…, Найдите образы базисных векторов. Из координат образа вектора Найдите образы базисных векторовсоставляем 1-й столбец матрицы линейного оператора, аналогично из координат последующих векторов – остальные столбцы. Рассмотрим на примере.

Пример 1. Пусть оператор задан с помощью формулы:

Найдите образы базисных векторов.

Прежде всего, докажем, что это отображение – действительно линейный оператор.

Отобразим сумму векторов:

Найдите образы базисных векторовТеперь каждую координату получившегося вектора можем преобразовать:

Найдите образы базисных векторовНайдите образы базисных векторов

Найдите образы базисных векторовНайдите образы базисных векторов.

Аналогично для умножения на константу:

Найдите образы базисных векторов

Найдите образы базисных векторов

Для того чтобы найти матрицу этого линейного оператора, нужно, как было сказано выше, подставить значения x1 = 1, x2 = 0, а затем x1 = 0, x2 = 1. В этом примере образы базисных векторов – соответственно (3, 1) и (2, -1).

Поэтому матрица линейного оператора будет иметь вид:

Найдите образы базисных векторов.

Аналогичным способом решается задача и для 3 и большего количества переменных.

Пример 2. Найдите образы базисных векторов.

Построим матрицу оператора. Отображая вектор (1,0,0), получаем (1,4,-1), соответственно (0,1,0) переходит в (2,1,-2), а вектор (0,0,1) – в (-1,1,3).

Матрица линейного оператора:

Найдите образы базисных векторов.

2.2. Построение матрицы оператора в случае, когда известен исходный базис и система векторов, в которую он отображается.

Если задана система Найдите образы базисных векторовиз n векторов, образующих базис, и какая-нибудь произвольная система n векторов Найдите образы базисных векторов(возможно, линейно-зависимая), то однозначно определён линейный оператор, отображающий каждый вектор первой системы в соответствующий вектор второй системы.

Матрицу этого оператора можно найти двумя способами: с помощью обратной матрицы и с помощью системы уравнений.

Пусть Найдите образы базисных векторов– матрица оператора в базисе Найдите образы базисных векторов. По условию, Найдите образы базисных векторовдля всех индексов Найдите образы базисных векторов. Данные n равенств можно записать в виде одного матричного равенства: Найдите образы базисных векторов, при этом столбцы матрицы Найдите образы базисных векторов– это векторы Найдите образы базисных векторов, а столбцы матрицы Найдите образы базисных векторов– векторы Найдите образы базисных векторов. Тогда матрица Найдите образы базисных векторовможет быть найдена в виде Найдите образы базисных векторов.

Пример. Найти матрицу линейного оператора, отображающего базис

Найдите образы базисных векторовв систему векторов Найдите образы базисных векторов.

Здесь Найдите образы базисных векторов, Найдите образы базисных векторов, Найдите образы базисных векторов, и получаем:

Найдите образы базисных векторов.

Проверка осуществляется умножением получившейся матрицы на каждый вектор: Найдите образы базисных векторов.

Аналогично решаются подобные задачи и для трёхмерного пространства. В приложении (§5) есть несколько вариантов таких задач.

2.3. Прочие способы нахождения матрицы оператора.

Существуют также примеры, где линейный оператор задаётся другими способами, отличными от рассмотренных в п. 2.1 и 2.2.

Пример. Линейными операторами являются как правое, так и левое векторное умножение на фиксированный вектор в трёхмерном пространстве, то есть отображения вида Найдите образы базисных векторови Найдите образы базисных векторов. Построим матрицу одного из этих операторов, Найдите образы базисных векторов. Для этого найдём образы всех трёх базисных векторов линейного пространства.

Найдите образы базисных векторов.

Аналогично, Найдите образы базисных векторов,

Найдите образы базисных векторов.

Координаты полученных векторов запишем в виде столбцов матрицы оператора.

Матрица оператора: Найдите образы базисных векторов.

Аналогично можно построить матрицу линейного оператора Найдите образы базисных векторов:

Найдите образы базисных векторов.

Пример. Линейный оператор дифференцирования в пространстве всех многочленов степени не более n. Это пространство размерности n + 1. Возьмём в качестве базиса элементы Найдите образы базисных векторов, Найдите образы базисных векторов, Найдите образы базисных векторов,…, Найдите образы базисных векторов.

Найдите образы базисных векторов, Найдите образы базисных векторов, Найдите образы базисных векторов, аналогично получим Найдите образы базисных векторов,…, Найдите образы базисных векторов.

Матрица этого линейного оператора:

Найдите образы базисных векторов

Линейные операторы могут отображать не только пространства конечной размерности, но и бесконечномерные пространства. Так, оператор дифференцирования может рассматриваться также в пространстве всех непрерывных функций. (В этом пространстве нет конечного базиса). В этом случае, очевидно, оператор не может быть задан матрицей конечного порядка.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10219 – Найдите образы базисных векторов| 7588 – Найдите образы базисных векторовили читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Видео:10.2 Матрица линейного оператораСкачать

10.2 Матрица линейного оператора

Матрица линейного оператора

Определение 1. Если задан закон, который каждому вектору x?? ставит в соот ветствие вектор y . то говорят, что в линейном пространстве ? задан оператор A , при этом пишут:

Определение 2. Оператор A называется линейным, если для любых x 1 ?? и x 2 ?? и произвольного числа ? выполняются условия:

Найдите образы базисных векторов

Рассмотрим теперь в евклидовом пространстве E n базис e 1 ,e 2 . e n и пусть в этом пространстве определён линейный оператор A : y = A x .

Разложим векторы x и y по базису e 1 ,e 2 . e n :

Найдите образы базисных векторов

В силу линейности оператора A можно написать

Заметим, что каждый вектор Найдите образы базисных векторов, следовательно, его также можно разложить по базису e 1 ,e 2 . e n , т.е.

Найдите образы базисных векторов

Найдите образы базисных векторов

В силу единственности разложения по данному базису мы можем при равнять коэффициенты при базисных векторах в правых частях формул (1) и (2); тогда получим:

Найдите образы базисных векторов

Получили, что линейному оператору A в данном базисе соответствует квадратная матрица

Найдите образы базисных векторов

которая называется матрицей линейного оператора A , i -й столбец которой состоит из координат вектора Ae i (i = 1,2. n ) относительно данного базиса. Отметим, что матрица A оператора A зависит от выбора базиса e 1 ,e 2 . e n .

Итак, мы показали, что всякому линейному оператору A в евклидовом пространстве E n соответствует матрица A ; можно доказать и обратное утверждение: всякую квадратную матрицу A можно рассматривать как матрицу некоторого линейного оператора A в данном базисе e 1 ,e 2 . e n .

Представляют интерес невырожденные линейные операторы, т.е. такие операторы, матрицы которых имеют обратную A -1 , т.е. также являются невырожденными. В этом случае каждому вектору y (образу), определённому соотношением, отвечает единственный вектор x (прообраз) и при этом имеет место матричное равенство: X = A -1 ? Y .

Видео:Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

Примеры линейных операторов

1. В пространстве 2-мерных векторов линейным оператором является правило

Найдите образы базисных векторов

связывающее вектор-прообраз Найдите образы базисных векторовс вектором-образом Найдите образы базисных векторов

2. В пространстве бесконечно дифференцируемых функций линейным оператором является операция дифференцирования, ставящая в соответствие каждому элементу этого простран ства его производную функцию.

3. В пространстве многочленов P n (t) линейным оператором является операция умножения многочлена на независимую переменную t .

Пример: Известны образы базисных векторов E 3 под действием оператора A :

Найдите образы базисных векторов

Найти матрицу этого оператора в исходном базисе.

Решение: По определению y = A x, значит в матричном виде можно записать, что A = X -1 Y . Для нашего примера получаем

Найдите образы базисных векторов

Видео:Матрица линейного оператораСкачать

Матрица линейного оператора

Действия над операторами

Сложение линейных операторов. Пусть x?E n , A и B – два линейных оператора в этом пространстве.

Определение 1. Суммой линейных операторов A и B в E n называется оператор C, определяемый равенством Cx = A x + Bx , где x – любой вектор из E n .

Сумма линейных операторов является линейным оператором, причём его матрица C = A + B, где A и B – матрицы линейных операторов A и B .

Умножение линейного оператора на число. Пусть x?E n , линейный оператор A определён в E n , ? – некоторое число.

Определение 2. Произведением линейного оператора A на число ? называется оператор ?A , определяемый равенством Найдите образы базисных векторов.

?A является линейным оператором, а матрица этого линейного оператора получается из матрицы A умножением её на число ? , т.е. она равна ? ? A.

Умножение линейных операторов. Пусть x? E n , y ? E n , z ? E n и кроме того в E n определены линейные операторы A и B таким образом, что y = Bx, z = A y .

Определение 3. Произведением A ? B линейных операторов A и B называется оператор C, определяемый соотношением Cx = A (Bx) .

Таким образом, перемножение линейных операторов состоит в последовательном их применении по отношению к вектору x .

Рассмотрим матрицы – столбцы:

Найдите образы базисных векторов

и обозначим через A, B и C – соответственно матрицы линейных операторов A, B и C. Тогда Z = A ? (B ? X) = (A ? B) ? X = C ? X , таким образом, C = A ? B, т.е. матрица произведения линей ных операторов также является линейным оператором.

a) (A ? B)(x + y) = A (B(x + y)) = A (Bx + By) = A (Bx) + A (By) = = (A ? B) ? x + (A ? B) ? y

б) (A ? B)(? x) = A (B(? x)) = A (?Bx) =?A (Bx) =? (A ? B)x

Свойства умножения линейных операторов вытекают из свойств умножения матриц.

Определение 4. Линейные операторы A и В называются равными, если Найдите образы базисных векторовНайдите образы базисных векторов. Равенство операторов обозначается как A = B .

Определение 5. Оператор E называется единичным (или тождественным) оператором, если каждому элементу x линейного пространства Найдите образы базисных векторовон ставит в соответствие тот же самый элемент, то есть Найдите образы базисных векторов

Видео:Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

1. Понятие линейного оператора

Пусть R и S линейные пространства, которые имеют размерность n и m соответственно. Оператором A действующим из R в S называется отображение вида Найдите образы базисных векторов, сопоставляющее каждому элементу x пространства R некоторый элемент y пространства S. Для этого отображения будем использовать обозначение y= A(x) или y= Ax.

Определение 1. Оператор A действующий из R в S называется линейным, если для любых элементов x1 и x2 пространства R и любого λ из числового поля K выполняются соотношения

Если пространство S совпадает с пространством R, то линейный оператор, который действует из R в R называют линейным преобразованием пространства R.

Пусть заданы два векторных пространства n-мерный R и m-мерный S, и пусть в этих пространствах заданы базисы Найдите образы базисных векторови Найдите образы базисных векторовсоответственно. Пусть задано отображение

y=Ax,(1)

где Am×n -матрица с коэффициентами из поля K. Тогда каждому элементу из R соответствует элемент y=Ax из S. Отображение (1) определяет оператор A. Покажем, что этот оператор обладает свойством линейности. Действительно, учитывая свойства умножения матриц, можно записать:

Найдите образы базисных векторов,(2)
Найдите образы базисных векторов.

Покажем теперь обратное, т.е. что для любого линейного оператора A, отображающего пространство R в S и произвольных базисов Найдите образы базисных векторови Найдите образы базисных векторовв R и S соответственно, существует такая матрица A с элементами из численного поля K, что определяемое этой матрицей линейное отображение (1) выражает координаты отображенного вектора y через координаты исходного вектора x.

Пусть x − произвольный элемент в R. Тогда

Найдите образы базисных векторов(3)

является разложением x в по базису Найдите образы базисных векторов.

Применим оператор A к базисным векторам Найдите образы базисных векторов:

Найдите образы базисных векторов(4)

где aij − координаты полученного вектора в базисе Найдите образы базисных векторов.

Тогда применяя оператор A к элементу x и учитывая (3) и (4), имеем

Найдите образы базисных векторовНайдите образы базисных векторов

Сделаем следующее обозначение:

Найдите образы базисных векторов(6)

Тогда равенство (5) примет следующий вид:

Найдите образы базисных векторов(7)

Из равенства (7) следует, что любой элемент из пространства R при отображении оператором A, в пространстве S и в базисе Найдите образы базисных векторовимеет координаты yi, i=1,2. m. В свою очередь, из (6) следует, что этим координатам соответствуют линейные комбинации координатов элемента xj, j=1,2. n с коэффициентами aij i=1,2. m; j=1,2. n.

Построим матрицу A с элементами aij:

Найдите образы базисных векторов(8)

Тогда выражение (6) можно записать в матричном виде:

y=Ax.(9)

Матрица A называется матрицей линейного оператора в заданных базисах Найдите образы базисных векторови Найдите образы базисных векторов.

Видео:Линейные комбинации, span и базисные вектора | Сущность Линейной Алгебры, глава 2Скачать

Линейные комбинации, span и базисные вектора | Сущность Линейной Алгебры, глава 2

2. Сложение линейных операторов

Пусть A и B два линейных оператора действующих из R в S и пусть A и Bmxn − матрицы соответствующие этим операторам.

Определение 2. Суммой линейных операторов A и B называется оператор C, определяемый равенством

Cx= Ax+ Bx, x∈R,(10)

где x∈R означает, что x принадлежит пространстве R.

Сумма линейных операторов обозначается так C=A+B. Легко убедится, что сумма линейных операторов также является линейным оператором.

Применим оператор C к базисному вектору ej, тогда:

Cej= Aej+ Bej=n(aij+bij) ej
j= 1

Следовательно оператору C отвечает матрица Найдите образы базисных векторов,где i=1,2. m, j=1,2. n, т.е.

C=A+B.(11)

Видео:Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

3. Умножение линейных операторов

Пусть заданы три линейных пространства R, S и T. Пусть линейный оператор B отображает R в S, а линейный оператор A отображает S в T.

Определение 3. Произведением операторов A и B называется оператор C, для которого выполняется следующее равенство при любом x из R:

Cx= A( Bx), x ∈ R.(12)

Произведение линейных операторов обозначается C=AB. Легко убедится, что произведение линейных операторов также является линейным оператором.

Таким образом оператор C отображает пространство R в T. Выберем в пространствах R, S и T базисы и обозначим через A, B и C матрицы операторов A, B и C соответствующие этим базисам. Тогда отображения линейных операторов A, B, C

y=Bx, z=Ay, z=Cx

можно записать в виде матричных равенств

y=Bx, z=Ay, z=Cx

где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда

Cx=A(Bx)=(AB)x.

Учитывая произвольность х, получим

C=AB.(13)

Следовательно произведению операторов C=AB соответствует матричное произведение C=AB.

Видео:Решение "базисной системы векторов" (2)Скачать

Решение "базисной системы векторов" (2)

4. Умножение линейного оператора на число

Пусть задан линейный оператор A отображающий R в S и некоторое число λ из поля K.

Определение 4. Произведением оператора A на число λ называется оператор C, для которого выполняется следующее равенство при любом x из R:

Cx=λ ( Ax)(14)

Таким образом оператор C отображает пространство R в S. Выберем в пространствах R и S базисы и обозначим через A матрицу оператора A соответствующее этим базисам векторные равенства

y=Ax, z=λy, z=Cx

можно записать в виде матричных равенств

y=Ax, z=λy, z=Cx

где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда

Cx=λ(Ax)=(λA)x.

Учитывая произвольность х, получим

C=λA.(15)

Следовательно произведению оператора C на число λ соответствует произведение матрицы A на число λ.

Видео:Линейная комбинация векторовСкачать

Линейная комбинация векторов

5. Нулевой оператор

Оператор, отображающий все элементы пространства R в нулевой элемент пространства S называется нулевым оператором и обозначается через O. Действие нулевого оператора можно записать так:

Видео:Векторы #3: многомерные системы координат, базисные векторыСкачать

Векторы #3: многомерные системы координат, базисные векторы

6. Противоположный оператор

Противоположным оператору A называется оператор −A удовлетворяющий равенству:

Видео:11.1 Образ и ядро линейного оператораСкачать

11.1 Образ и ядро линейного оператора

7. Ядро линейного оператора

Определение 5. Ядром линейного оператора A называется множество всех тех элементов x пространства R, для которых выполняется следующее равенство: Ax=0.

Ядро линейного оператора также называют дефектом оператора. Ядро линейного оператора обозначается символом ker A.

Видео:Образ линейного оператора. ПримерСкачать

Образ линейного оператора. Пример

8. Образ линейного оператора

Определение 6. Образом линейного оператора A называется множество всех элементов y пространства R, для которых выполняется следующее равенство: y=Ax для всех x из R.

Образ линейного оператора обозначается символом im A.

Видео:Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

9. Ранг линейного оператора

Определение 7. Рангом линейного оператора A обозначаемое символом rang A называется число равное размерности образа im A оператора A, т.е.: rang A=dim(im A).

🔍 Видео

Собственные векторы и собственные значения матрицыСкачать

Собственные векторы и собственные значения матрицы

Ядро и образ линейного оператораСкачать

Ядро и образ линейного оператора

Матрица линейного оператора (01)Скачать

Матрица линейного оператора (01)
Поделиться или сохранить к себе: