Квадратный корень из комплексного числа
Корни четвертой и пятой степени
Возведение в степень
Мнимая и действительная часть
Можно использовать следующие функции от z (например, от z = 1 + 2.5j):
- Правила ввода выражений и функций
- Где учитесь?
- Комплексные числа по-шагам
- Результат
- Примеры комплексных выражений
- Правила ввода
- Тригонометрическая форма комплексного числа
- Приведение комплексного числа из алгебраической формы в тригонометрическую
- Умножение комплексных чисел в тригонометрической форме записи
- Деление комплексных чисел в тригонометрической форме записи
- 📽️ Видео
Правила ввода выражений и функций
3.14159.. e Число e — основание натурального логарифма, примерно равно
2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности
© Контрольная работа РУ — калькуляторы онлайн
Видео:КОМПЛЕКСНЫЕ ЧИСЛА ДЛЯ ЧАЙНИКОВ ЗА 7 МИНУТСкачать
Где учитесь?
Для правильного составления решения, укажите:
Видео:Изображение комплексных чисел. Модуль комплексного числа. 11 класс.Скачать
Комплексные числа по-шагам
Видео:Тригонометрическая форма комплексного числаСкачать
Результат
Примеры комплексных выражений
- Деление комплексных чисел
- Умножение комплексных чисел
- Комплексные уравнения
- Возведение комплексного числа в степень
- Корень из комплексного числа
Указанные выше примеры содержат также:
- квадратные корни sqrt(x),
кубические корни cbrt(x) - тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
- обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x) - натуральные логарифмы ln(x),
десятичные логарифмы log(x) - гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x) - обратные гиперболические функции:
asinh(x), acosh(x), atanh(x), actanh(x) - число Пи pi
- комплексное число i
Правила ввода
Можно делать следующие операции
2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5
Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:
Видео:Решение, представить комплексное число z=2+2i в тригонометрической и показательной форме. пример 2Скачать
Тригонометрическая форма комплексного числа
Рассмотрим комплексное число, заданной в обычной (алгебраической) форме:
z=a+ib. | (1) |
Задача заключается в представлении комплексного числа (1) в тригонометрической форме. Для этого на комплексной плоскости введем полярные координаты. Примем за полюс начало координат, а за полярную ось вещественную ось R.
Как известно, полярными координатами точки z являются длина r ее радиус-вектора, равной расстоянию от точки z до полюса, и величина ее полярного угла, т.е. угла, образованного между полярной осью и вектором-радиусом точки z. Отметим, что направление отсчета угла берется от полярной оси до вектора-радиуса против часовой стрелки (Рис.1, Рис.2).
На Рис.3 изображено комплексное число z. Координаты этого числа в декартовой системе координат (a, b). Из определения функций sin и cos любого угла, следует:
. |
. | (2) |
Подставляя (2) в (1), получим:
. | (3) |
Эта форма записи называется тригонометрической формой записи комплексного числа.
Уравнения (2) возведем в квадрат и сложим:
. |
(4) |
r−длина радиус-вектора комплексного числа z называется модулем комплексного числа и обозначается |z|. Очевидно |z|≥0, причем |z|=0 тогда и только тогда, когда z=0.
Величина полярного угла точки, соответвующей комплексному числу z, т.е. угла φ, называется аргументом этого числа и обозначается arg z. Заметим, что arg z имеет смысл лишь при z≠0. Аргумент комплексного числа 0 не имеет смысла.
Аргумент комплексного числа определен неоднозначно. Если φ аргумент комплексного числа, то φ+2πk, k=0,1. также является аргументом комплексного числа, т.к. cos(φ+2πk)=cosφ, sin(φ+2πk)=sinφ.
Видео:Перевод комплексного числа из алгебраической формы в тригонометрическую, показательнуюСкачать
Приведение комплексного числа из алгебраической формы в тригонометрическую
Пусть комплексное число представлено в алгебраической форме: z=a+bi. Представим это число в тригонометрической форме. Вычисляем модуль комплексного числа: . Вычисляем аргумент φ комплексного числа из выражений или . Полученные значения вставляем в уравнение (3).
Пример 1. Представить комплексное число z=1 в тригонометрической форме.
Решение. Комплексное число z=1 можно представить так: z=1+0i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=1/1. Откуда имеем φ=0. Подставляя значения модуля и аргумента в (3), получим: z=1(cos0+isin0).
Пример 2. Представить комплексное число z=i в тригонометрической форме.
Решение. Комплексное число z=i можно представить так: z=0+1i. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=0/1. Откуда имеем φ=π/2. Подставляя значения модуля и аргумента в (3), получим: .
Ответ. .
Пример 3. Представить комплексное число z=4+3i в тригонометрической форме.
Решение. Вычислим модуль этого числа: . Вычислим аргумент этого числа: cosφ=4/5. Откуда имеем φ=arccos(4/5). Подставляя значения модуля и аргумента в (3), получим: .
Ответ. , где φ=arccos(4/5).
Видео:10 класс, 34 урок, Тригонометрическая форма записи комплексного числаСкачать
Умножение комплексных чисел в тригонометрической форме записи
z1·z2=[r1(cosφ1+i sinφ1)][r2(cosφ2+i sinφ2]=r1r2[cos(φ1+φ2)+isin(φ1+φ2)] |
z1z2=r1r2[cos(φ1+φ2)+isin(φ1+φ2)] | (5) |
В результате умножения комплексных чисел в тригонометрической форме мы получили комплексное число в тригонометрической форме, следовательно |z1z2|=r1r2, или
|z1z2|=|z1||z2|, | (6) |
т.е. модуль произведения комплексных чисел равен произведению модулей сомножителей .
arg(z1z2)=arg(z1)+arg(z2), | (7) |
т.е. аргумент произведения комплексных чисел равен сумме аргументов сомножителей .
Пример 4. Умножить комплексные числа и .
Решение. Воспользуемся формулой (5):
Ответ. .
Видео:Изобразить область на комплексной плоскостиСкачать
Деление комплексных чисел в тригонометрической форме записи
(8) |
Отсюда следует, что или
(9) |
Далее , или
(10) |
Следовательно, модуль частного двух комплексных чисел равен модулю делимого, деленному на модуль делителя, а аргумент частного двух комплексных чисел получается вычитанием аргумента делителя от аргумента делимого .
Пример 5. Делить комплексные числа и .
Решение. Воспользуемся формулой (8):
Ответ. .
📽️ Видео
Математика без Ху!ни. Комплексные числа, часть 3. Формы записи. Возведение в степень.Скачать
Комплексные числа. Тригонометрическая форма. Формула Муавра | Ботай со мной #040 | Борис Трушин !Скачать
Математика без Ху!ни. Комплексные числа, часть 2. Простейшие действия.Скачать
2. Геометрическая интерпретация комплексных чисел. Модуль и аргумент комплексного числаСкачать
Решение, записать комплексное число z=2√3−2i в тригонометрической и показательной форме. пример 6Скачать
Сложение, вычитание, умножение и деление комплексных чисел | Высшая математикаСкачать
Аргумент комплексного числа. Часть 1Скачать
Тригонометрическое уравнение: cos(z)=2, а при чём тут формула Эйлера?Скачать
Тригонометрическая и показательная форма комплексного числа: Действия и Бонус | Высшая математикаСкачать
4. Показательная форма комплексного числаСкачать
Математика без Ху!ни. Комплексные числа, часть 1. Введение.Скачать
10 класс, 32 урок, Комплексные числа и арифметические операции над нимиСкачать