Окружностью называется кривая замкнутая линия на плоскости, все точки которой находятся на одинаковом расстоянии от одной точки; эта точка называется центром окружности.
Часть плоскости, ограниченная окружностью, называется кругом.
Отрезок прямой, соединяющий точку окружности с её центром, называется радиусом (рис. 84).
Так как все точки окружности находятся от центра на одном и том же расстоянии, то все радиусы одной и той же окружности равны между собой. Радиус обыкновенно обозначается буквой R или r.
Точка, взятая внутри окружности, находится от её центра на расстоянии, меньшем радиуса. В этом легко убедиться, если через данную точку провести радиус (рис. 85).
Точка, взятая вне окружности, находится от её центра на расстоянии, большем радиуса. В этом легко убедиться, если соединить данную точку с центром окружности (рис. 85).
Отрезок прямой, соединяющий две точки окружности, называется хордой.
Хорда, проходящая через центр, называется диаметром (рис. 84). Диаметр обыкновенно обозначается буквой D. Диаметр равен двум радиусам:
Так как все радиусы одного и того же круга равны между собой, то и все диаметры данного круга равны между собой.
Теорема . Хорда, не проходящая через центр круга, меньше диаметра, проведённого в том же круге.
В самом деле, если проведём какую-нибудь хорду, например АВ, и соединим её концы с центром О (рис. 86), то увидим, что хорда АВ меньше ломаной линии АО + ОВ, т. е. АВ (breve); (breve) Задача. Через три точки, не лежащие на одной прямой, провести окружность.
Пусть нам даны три точки А, В и С, не лежащие на одной прямой (черт.311).
Соединим эти точки отрезками АВ и ВС. Чтобы найти точки равноудалённые от точек А и В разделим отрезок АВ пополам и через середину (точку М) проведём прямую перпендикулярную к АВ. Каждая точка этого перпендикуляра одинаково удалена от точек А и В.
Чтобы найти точки, равноудалённые от точек В и С, разделим отрезок ВС пополам и через его середину (точку N) проведем прямую, перпендикулярную ВС. Каждая точка этого перпендикуляа одинаково удалена от точек В и С.
Точка О пересечения этих перпендикуляров будет находиться на одинаковом расстоянии от данных точек А, В и С (АО = ВО = СО). Если мы, приняв точку О за центр круга, радиусом, равным АО, проведём окружность, то она пройдёт через все данные точки А, В и С.
Точка О является единственной точкой, которая может служить центром окружности, проходящей через три точки А, В и С, не лежащие на одной прямой, так как два перпендикуляра к отрезкам АВ и ВС могут пересечься только в одной точке. Значит, задача имеет единственное решение.
Примечание. Если три точки А, В и С будут лежать на одной прямой, то задача не будет иметь решения, так как перпендикуляры к отрезкам АВ и ВС будут параллельны и не будет существовать точки, одинаково удаленной от точек А, В, С, т. е. точки, которая могла бы служить центром искомой окружности.
Если соединить отрезком точки А и С и середину этого отрезка (точку К) соединить с центром окружности О, то ОК будет перпендикулярна к АС (черт. 311), так как в равнобедренном треугольнике АОС ОК является медианой, поэтому ОК⊥АС.
Следствие. Три перпендикуляра к сторонам треугольника, проведённые через их середины пересекаются в одной точке.
- Отрезки и прямые, связанные с окружностью. Теорема о бабочке
- Отрезки и прямые, связанные с окружностью
- Свойства хорд и дуг окружности
- Теоремы о длинах хорд, касательных и секущих
- Доказательства теорем о длинах хорд, касательных и секущих
- Теорема о бабочке
- math4school.ru
- Окружность
- Основные определения
- Хорды
- Касательные и секущие
- Касание двух окружностей
- Углы в окружности
- Длина окружности и дуги
- 🎬 Видео
Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать
Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Отрезки и прямые, связанные с окружностью |
Свойства хорд и дуг окружности |
Теоремы о длинах хорд, касательных и секущих |
Доказательства теорем о длинах хорд, касательных и секущих |
Теорема о бабочке |
Видео:№632. Расстояние от точки А до центра окружности меньше радиуса окружности. Докажите, что любаяСкачать
Отрезки и прямые, связанные с окружностью
Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||||||||||||||||||||||||||||||||
Окружность | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Круг | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Радиус | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Хорда | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Диаметр | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Касательная | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Секущая |
Окружность |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Конечная часть плоскости, ограниченная окружностью
Отрезок, соединяющий центр окружности с любой точкой окружности
Отрезок, соединяющий две любые точки окружности
Хорда, проходящая через центр окружности.
Диаметр является самой длинной хордой окружности
Прямая, имеющая с окружностью только одну общую точку.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания
Прямая, пересекающая окружность в двух точках
Видео:Окружность, диаметр, хорда геометрия 7 классСкачать
Свойства хорд и дуг окружности
Фигура | Рисунок | Свойство |
Диаметр, перпендикулярный к хорде | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. | |
Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
Равные хорды | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. | |
Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
Две хорды разной длины | Большая из двух хорд расположена ближе к центру окружности. | |
Равные дуги | У равных дуг равны и хорды. | |
Параллельные хорды | Дуги, заключённые между параллельными хордами, равны. |
Диаметр, перпендикулярный к хорде |
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Большая из двух хорд расположена ближе к центру окружности.
У равных дуг равны и хорды.
Дуги, заключённые между параллельными хордами, равны.
Видео:№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать
Теоремы о длинах хорд, касательных и секущих
Фигура | Рисунок | Теорема | ||||||||||||||||||||||||||||||||||||||||
Пересекающиеся хорды | ||||||||||||||||||||||||||||||||||||||||||
Касательные, проведённые к окружности из одной точки | ||||||||||||||||||||||||||||||||||||||||||
Касательная и секущая, проведённые к окружности из одной точки | ||||||||||||||||||||||||||||||||||||||||||
Секущие, проведённые из одной точки вне круга |
Пересекающиеся хорды | ||
Касательные, проведённые к окружности из одной точки | ||
Касательная и секущая, проведённые к окружности из одной точки | ||
Секущие, проведённые из одной точки вне круга | ||
Пересекающиеся хорды |
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Видео:Длина окружности. Площадь круга - математика 6 классСкачать
Доказательства теорем о длинах хорд, касательных и секущих
Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).
Тогда справедливо равенство
Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).
Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство
Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).
Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство
Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).
Точка B – точка касания. В силу теоремы 2 справедливы равенства
откуда и вытекает требуемое утверждение.
Видео:Окружность и круг, 6 классСкачать
Теорема о бабочке
Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.
Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:
Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим
Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим
Воспользовавшись теоремой 1, получим
Воспользовавшись равенствами (1) и (2), получим
Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство
откуда вытекает равенство
что и завершает доказательство теоремы о бабочке.
Видео:Длина окружности. Математика 6 класс.Скачать
math4school.ru
Видео:Окружность. 7 класс.Скачать
Окружность
Видео:Уравнение окружности (1)Скачать
Основные определения
Окружностью называется замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра окружности), которая лежит в той же плоскости, что и кривая.
Отрезок R , который соединяет центр окружности с любой её точкой (а также длина этого отрезка), называется радиусом.
Отрезок DE , который соединяет какие-либо две точки окружности, называется хордой.
Хорда BC , проходящая через центр окружности, называется диаметром.
Диаметр – наибольшая хорда данной окружности. Наименьшей хорды окружности не существует.
Дуга, ∪AB,– это часть окружности, расположенная между двумя её точками.
Вписанным углом, α , называется угол, образованный двумя хордами, имеющими общий конец.
Центральным углом, β , называется угол, образованный двумя радиусами.
Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать
Хорды
Параллельные хорды отсекают на окружности равные дуги:
Диаметр, проходящий через середину хорды, перпендикулярен ей:
Хорды окружности равны тогда и только тогда, когда они равноудалены от её центра:
Хорды окружности равны тогда и только тогда, когда они стягивают равные дуги:
Большая из двух хорд окружности расположена ближе к её центру:
Угол, составленный двумя хордами, измеряется полусуммой дуг, заключённых между его сторонами, продолженными в обе стороны:
Если хорды AB и CD пересекаются в точке М, то
Видео:Длина окружности. Площадь круга. 6 класс.Скачать
Касательные и секущие
Прямая ( a ), которая лежит в одной плоскости с окружностью и имеет с ней только одну общую точку ( B ), называется касательной к этой окружности.
Прямая ( a ), которая перпендикулярна диаметру окружности ( АВ ) и проходит через его конец ( В ), является касательной к этой окружности.
Касательная окружности перпендикулярна диаметру и радиусу, проведённым в точку касания.
Отрезки касательных, проведённые из одной точки, равны:
Углы, образованные касательными, проведёнными из одной точки, и прямой, проходящей через центр окружности и эту точку, равны:
Прямая, которая пересекает окружность в двух различных точках, называется секущей.
Если через точку М вне окружности проведена секущая к ней, то произведение расстояний от точки М до точек пересечения с окружностью равно квадрату длины отрезка касательной, проведённой из точки М к окружности:
Угол, образованный двумя секущими, равен полуразности дуг, заключенных между его сторонами:
Видео:16 задание ОГЭ математика 2023 | УмскулСкачать
Касание двух окружностей
Для двух окружностей с центрами О 1 и О 2, и радиусами R и r :
- при внешнем касании: О 1 О 2 = R + r ;
- при внутреннем касании: О 1 О 2 = R – r .
Видео:7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать
Углы в окружности
Радиан – угол, который соответствует дуге, длина которой равна радиусу окружности. Один радиан содержит приближённо 57°17’44,8’’.
Радиан принимается за единицу измерения углов при так называемом круговом, или радианном, измерении углов.
Если радианная мера угла равна α , то угол содержит (180· α )/ π градусов.
Если градусная мера угла составляет п ° , то круговая – πп /180 радиан.
Угловой величиной дуги называется величина соответствующего ей центрального угла:
Угловая величина дуги обладает следующими свойствами:
- Угловая величина дуги неотрицательна.
- Равные дуги имеют равные угловые величины.
- Если две дуги одной окружности (или равных окружностей) имеют равные угловые величины, то они равны.
Вписанный угол измеряется половиной дуги, на которую он опирается, и равен половине центрального угла, опирающегося на ту же дугу:
∠ АВС = ½ ·∪ АС = ½ ·∠ АОС .
Вписанные углы, опирающиеся на одну и ту же дугу, равны:
Вписанный угол, опирающийся на полуокружность (диаметр), является прямым:
∠ ACВ = ½ ·∪ АВ = ½ ·180°=90°.
Видео:ЕГЭ. Задачи на окружность. ХордаСкачать
Длина окружности и дуги
Длиной окружности называется общая граница периметров вписанных и описанных правильных многоугольников при неограниченном увеличении числа их сторон.
Отношение длины окружности к длине её диаметра одинаково для всех окружностей и обозначается греческой буквой π .
Длина дуги окружности, выраженной в радианной мере, равна произведению числа её радиан на радиус окружности:
🎬 Видео
Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать
Радиус Хорда ДиаметрСкачать
Задача по геометрии за 8 класс на тему "Окружность"Скачать
МЕРЗЛЯК-6. КРУГ И ОКРУЖНОСТЬ. ПАРАГРАФ-24Скачать
Окружность. Как найти Радиус и ДиаметрСкачать
Окружность. Круг. 5 класс.Скачать