Определение
Ромб – это параллелограмм, у которого все стороны равны.
Таким образом, ромб обладает всеми свойствами параллелограмма:
(sim) противоположные углы ромба попарно равны;
(sim) соседние углы ромба в сумме дают (180^circ) ;
(sim) диагонали точкой пересечения делятся пополам.
Теорема: свойство ромба
Диагонали ромба перпендикулярны и делят его углы пополам.
Доказательство
Рассмотрим ромб (ABCD) .
По определению ромба (AB = AD) , поэтому треугольник (BAD) равнобедренный. Так как ромб – параллелограмм, то его диагонали точкой (O) пересечения делятся пополам. Следовательно, (AO) – медиана равнобедренного треугольника (BAD) , а значит, высота и биссектриса этого треугольника. Поэтому (ACperp BD) и (angle BAC = angle DAC) .
Теорема: признаки ромба
1. Если в параллелограмме диагонали перпендикулярны, то это – ромб.
2. Если в параллелограмме диагонали делят его углы пополам, то это – ромб.
3. Если в выпуклом четырехугольнике все стороны равны, то он – ромб.
Доказательство
1) Рассмотрим параллелограмм (ABCD) . Пусть (ACperp BD) .
Т.к. в параллелограмме диагонали точкой пересечения делятся пополам, то в треугольнике (ABD) отрезок (AO) – медиана. Т.к. к тому же (AO) – высота (следует из условия), то (triangle ABD) – равнобедренный, т.е. (AB=AD) . Т.к. у параллелограмма противоположные стороны равны, то отсюда следует, что все его стороны будут равны.
2) Пусть (AC) – биссектриса угла (angle A) .
Т.к. в параллелограмме диагонали точкой пересечения делятся пополам, то в треугольнике (ABD) отрезок (AO) – медиана. Т.к. к тому же (AO) – биссектриса (следует из условия), то (triangle ABD) – равнобедренный, т.е. (AB=AD) . Т.к. у параллелограмма противоположные стороны равны, то отсюда следует, что все его стороны будут равны.
3) Пусть (ABCD) – произвольный четырехугольник и (AB=BC=CD=AD) .
Т.к. противоположные стороны четырехугольника попарно равны, то он – параллелограмм. Т.к. у него все стороны равны, то по определению это ромб.
Видео:Геометрия Доказательство Диагонали ромба перпендикулярны и являются биссектрисами его угловСкачать
Ромб и его свойства, определение и примеры с решением
Ромбом называют параллелограмм, у которого все стороны равны (рис. 48).
Так как ромб является параллелограммом, то он имеет все свойства параллелограмма.
1. Сумма любых двух соседних углов ромба равна 180°.
2. У ромба противолежащие углы равны.
3. Диагонали ромба точкой пересечения делятся пополам.
4. Периметр ромба
Кроме того, ромб имеет еще и такое свойство.
5. Диагонали ромба взаимно перпендикулярны и делят его углы пополам.
Доказательство:
Пусть и — диагонали ромба (рис. 49), — точка их пересечения. Поскольку и то — медиана равнобедренного треугольника проведенная к основанию Поэтому является также высотой и биссектрисой треугольника
Следовательно, и
Аналогично можно доказать, что диагональ АС делит пополам угол а диагональ делит пополам углы и
Пример:
Угол между высотой и диагональю ромба проведенными из одной вершины, равен 28°. Найдите углы ромба.
Решение:
Пусть — диагональ ромба а — его высота (рис. 50), = 28°.
1) В
2) Так как делит угол пополам, то
3) Тогда
Ответ. 124°, 56°, 124°, 56°.
Рассмотрим признаки ромба.
Теорема (признаки ромба). Если в параллелограмме: 1) две соседние стороны равны, или 2) диагонали пересекаются под прямым углом, или 3) диагональ делит пополам углы параллелограмма, — то параллелограмм является ромбом.
Доказательство:
1) Пусть — параллелограмм (рис. 48). Так как (по условию) и (по свойству параллелограмма), то Следовательно, — ромб.
2) Пусть (рис. 49). Поскольку (по свойству параллелограмма), то (по двум катетам). Следовательно, По п. 1 этой теоремы — ромб.
3) Диагональ делит пополам угол параллелограмма (рис. 49), то есть Так как — секущая, то (как внутренние накрест лежащие). Следовательно, Поэтому по признаку равнобедренного треугольника — равнобедренный и По п. 1 этой теоремы — ромб.
Пример:
Докажите, что если в четырехугольнике все стороны равны, то этот четырехугольник — ромб.
Доказательство:
Пусть (рис. 48).
1) Так как противолежащие стороны четырехугольника попарно равны, то — параллелограмм по признаку параллелограмма.
2) У параллелограмма соседние стороны равны. Поэтому — ромб (по признаку ромба).
Слово «ромб» греческого происхождения, которое в древние времена означало вращающееся тело, веретено, волчок. Ромб тогда связывали с сечением веретена, на которое намотаны нити.
В «Началах» Евклида термин «ромб» встречается единожды, а свойства ромба Евклид вообще не рассматривал.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Квадрат и его свойства
- Трапеция и ее свойства
- Площадь трапеции
- Центральные и вписанные углы
- Четырехугольники и окружность
- Параллелограмм, его свойства и признаки
- Площадь параллелограмма
- Прямоугольник и его свойства
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Видео:Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать
Если диагонали четырехугольника делят его углы пополам то это ромб
Какие из следующих утверждений верны?
1) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.
4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.» — верно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°.
4) «Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.» — верно, сумма углов выпуклого четырехугольника равна 360°.
💥 Видео
Геометрия Признак ромба Если диагональ параллелограмма является биссектрисой его угла, то этотСкачать
Геометрия Признак параллелограмма: Если в четырехугольнике диагонали точкой пересечения делятсяСкачать
Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать
Площадь ромба. Легче понять...Скачать
Геометрия Признак ромба Если диагонали параллелограмма перпендикулярны, то этот параллелограмм ромбСкачать
№408. Докажите, что параллелограмм является ромбом, если: а) его диагонали взаимноСкачать
Задача 6 №27828 ЕГЭ по математике. Урок 97Скачать
Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать
№568. Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон:Скачать
Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать
№407. Найдите углы, которые образуют диагонали ромба с его сторонами, если одинСкачать
№405. В ромбе одна из диагоналей равна стороне. Найдите: а) углы ромба; б) углы,Скачать
Если диагонали параллелограмма равны, то это ромб. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Если в параллелограмме диагонали являются биссектрисами его угловСкачать
Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрииСкачать
8 класс, 4 урок, ПараллелограммСкачать
8 класс, 8 урок, Ромб и квадратСкачать
Ромб, признаки. 8 класс.Скачать