По мнению историков, название это «непростой» простой фигуре дал немецкий механик Франц Рёло, живший с 1829 по 1905 годы. Многие историки сходятся в том, что именно он стал первооткрывателем свойств этой геометрической фигуры. Потому как он первый широко использовал свойства и возможности треугольника Рёло в своих механизмах.
Франц Рёло первым дал доскональные определения понятиям «кинетическая пара», «кинетическая цепь». Он впервые показал возможность связи между основами механики и конструирования. То есть связал теорию и практические проблемы конструирования. Что позволило создавать механизмы в совокупности их функциональных возможностей с внешней привлекательностью/эстетичностью. Отсюда Рёло стали считать поэтом механики. Что позволило последователям в корне пересмотреть имеющиеся в ней теории.
Иные исследователи первооткрывателем этой фигуры признают Леонарда Эйлер (18 век), который уже тогда продемонстрировал возможность его создания ее из трех окружностей.
А третьи «увидели» треугольник Рёло в рукописях гениального Леонардо Да Винчи. Манускрипты этого естествоиспытателя, с изображением этой «простой» фигуры, хранятся в Мадридском кодексе и в Институте Франции.
Но кто бы ни был первооткрывателем этот «не простой» треугольник получил широкое распространение в современном мире.
• Сверло Уаттса. В 1914 году Гарри Джеймс Уаттс изобрел уникальный инструмент для высверливания квадратных отверстий. Это сверло, выполнено в форме Треугольника Рёло;
• Двигатель Ванкеля. С 1957 года треугольник Рёло немецкий изобретатель Ванкель Ф. создал уникальный механизм. Где внутри камеры, цилиндрической формы, по сложной траектории передвигается ротор-поршень. Созданный в форме треугольника Рёло. При его постоянном движении, каждая его грань, контактируя со стенками камеры, образует сразу три камеры, названные позже «камерами сгорания».
• Грейферный механизм кинопроекторов. Треугольник Рёло, вписанный в квадрат и двойной параллелограмм лежат в его основе. А нужен он для равномерного продергивания кинопленки во время киносеанса со скоростью в 18 кадров/с без отклонений и задержек;
• Основа кулачкового механизма для зигзагообразного шва в швейных машинках, а также в немецких часах таких известных марок как A. Lange & Söhne «Lange 31»;
• Плектр или медиатор, тоже не что иное, как треугольник Рёло. Они необходимы при игре на щипковых музыкальных инструментах.
• В архитектуре. Конструкция из двух дуг треугольника Рёло образует стрельчатую арку готического стиля. А окна в форме Рёло стоят в Брюгге в церкви Богоматери. Как орнамент он присутствует и на оконных решетках швейцарской коммуны Отрив и цистерцианского аббатства.
На самом деле Рёло не является первооткрывателем этой фигуры, хотя он и подробно исследовал её. В частности, он рассматривал вопрос о том, сколько контактов (в кинематических парах) необходимо, чтобы предотвратить движение плоской фигуры, и на примере искривлённого треугольника, вписанного в квадрат, показал, что даже трёх контактов может быть недостаточно для того, чтобы фигура не вращалась.
Леонардо да Винчи, манускрипт A, фрагмент листа 15v
Некоторые математики считают, что первым продемонстрировал идею треугольника из равных дуг окружности Леонард Эйлер в XVIII веке. Тем не менее, подобная фигура встречается и раньше, в XV веке: её использовал в своих рукописях Леонардо да Винчи. Треугольник Рёло есть в его манускриптах A и B, хранящихся в Институте Франции[10], а также в Мадридском кодексе.
Примерно в 1514 году Леонардо да Винчи создал одну из первых в своём роде карт мира. Поверхность земного шара на ней была разделена экватором и двумя меридианами(угол между плоскостями этих меридианов равен 90°) на восемь сферических треугольников, которые были показаны на плоскости карты треугольниками Рёло, собранными по четыре вокруг полюсов.
Ещё раньше, в XIII веке, создатели церкви Богоматери в Брюгге использовали треугольник Рёло в качестве формы для некоторых окон
Следовательно, изобретенный в прошлом веке треугольник Рёло широко используется сегодня. Однако его изучение не стоит на месте. Его свойства, как характеристики простой фигуры, находится в постоянном теоретическом и практическом изучении.
Именно треугольник Рело может помочь нам в сверлении квадратных отверстий. Достаточно двигать центр этого «треугольника» по некой траектории, и его вершины начертят почти квадрат, а границы полученной фигуры, за исключением небольших кусочков по углам, будут строго прямыми! Такими, что, если продолжить отрезки, тем самым добавив уголочки, то получится в точности квадрат.Площадь незаметенных уголочков составляет всего около 2 процентов от площади всего квадрата!
А вот еще применение :
Китайский офицер Гуан Байхуа из Циндао заново изобрел колесо. Он создал необычный велосипед: вместо круглых колес у него треугольник сзади и пятиугольник спереди.
Сам изобретатель уверен, что новая модель будет пользоваться популярностью, поскольку, чтобы передвигаться на таком велосипеде, требуется больше усилий, а значит, это в какой-то степени может заменить спортивную нагрузку.
Добровольцы, опробовавшие новинку, были удивлены тем, насколько ровно передвигается велосипед с новыми колесами. Дело в том, что углы многоугольников сглажены. Это позволяет велосипеду не «прыгать» вверх-вниз, как можно было бы ожидать, поясняет со ссылкой на The Times InoPressa.ru.
Кроме того, колеса по форме являются кривыми постоянной длины, иначе называемыми «многоугольниками Рело» или «круглыми многоугольниками». Контур таких фигур представляет собой плоскую выпуклую кривую, расстояние между любыми двумя параллельными опорными прямыми которой постоянно и равно «ширине» кривой.
Несмотря на то, что новый велосипед не пользуется коммерческим успехом, Байхуа не унывает. Теперь он занят созданием новой социальной сети в интернете.
- «Треугольник рело»
- Применение в автомобильных двигателях
- Фактически каждая из трёх боковых поверхностей ротора действует как поршень. При всех достоинствах РПД — компактности, приемистости, отсутствии кривошипно-шатунного и газораспределительного механизмов, а так же значительно меньших габаритов и массе при одинаковой с поршневыми двигателями внутреннего сгорания мощности, он имеет и ряд серьезных недостатков: часто выходящие из строя уплотнительные элементы, плохая приспосабливаемость к изменениям внешней нагрузки, повышенный расход топлива и неудовлетворительные показатели по выбросам в отработавших газах. Тем не менне в серийном производстве находятся автомобили Mazda RX-8.
- Треугольник Рёло в искусстве, архитектуре и литературе
- Заключение
- 2. Треугольник Рёло// Материал из Википедии — свободной энциклопедии
- Треугольник с закругленными углами
- 🔥 Видео
Видео:CorelDraw - Создать треугольник со скругленными угламиСкачать
«Треугольник рело»
Международный Фестиваль «Звезды Нового Века» — 2013
Точные науки (от 14 до 17 лет)
Шорин Алихан 14 лет,
Мачнев Александр 14 лет
КГУ «Комплекс школа-детский
Глава 1. Основные геометрические характеристики и свойства тре-
1.1.Построение треугольника Рело циркулем _____________________3
1.2.Основные геометрические характеристики и свойства треугольни-
ка Рело ______________________________________________________4
Глава 2. История изобретения и применение треугольника Рело
2.2.История изобретения треугольника Рело ______________________7
2.3.Применение треугольника Рело ______________________________7
2.4.Изобретение велосипеда с треугольными колесами ____________10
Заключение ___________________________________________________ 10
Список используемых источников ______________________________11
Приложение 1. Использование треугольника Рело в архитектуре 12
«Изобретением велосипеда» называют бессмысленное повторение и переоткрытие давно пройденного и известного, и совершенно напрасно. Современные инженеры, можно сказать, постоянно изобретают велосипед, внося все новые усовершенствования в его конструкцию и отдельные детали. Однажды в интернете мы прочитали об одном удивительном изобретении китайского пенсионера – велосипеде с треугольными колесами (Рис. 1). Нас заинтересовало не только само по себе данное изобретение, но и необычная геометрическая фигура – круглый треугольник. Мы узнали, что он называется треугольником Рело и посвятили свою работу изучению его свойств и областей применения. А заодно поставили задачу выяснить, как геометрия позволяет этому чуду катиться и иметь удивительно плавный ход.
Рисунок 1 . Велосипед с треугольными колесами
Цель работы — изучить основные свойства треугольника Рело, историю его изобретения, рассмотреть области применения, выявить задачи, связанные с треугольником Рело.
Для этого поставлены следующие задачи:
Ø Познакомиться с историей изобретения;
Ø Рассмотреть и изучить свойства треугольника Рело;
Ø Выяснить области применения треугольника Рело.
Ø Найти объяснение плавности хода велосипеда с «треугольными колесами»
Гипотеза: Треугольнику Рело присущи свойства обеих геометрических фигур, используемых в его построении, кроме того он обладает собственными свойствами, которые используются в технике.
Теоретическая значимость исследования состоит в описании, всестороннем анализе, сопоставлении свойств геометрических фигур, опережающем изучении формул площадей фигур, обощении и систематизации материала по теме проекта.
Практическая значимость состоит в том, что результаты работы могут найти применение в курсах по выбору, программах факультативов, основой для разработки внеклассных занятий по математике и интегрированных уроков математики и физики. Работа над темой существенно расширит представления о «круглом» треугольнике, семействе фигур постоянной ширины.
Определение: Треуго́льник Рёло́ представляет собой область пересечения трёх равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне. Негладкая замкнутая кривая, ограничивающая эту фигуру, также называется треугольником Рёло [ 1 ].
Построение треугольника Рело циркулем:
Рисунок 2. Построение треугольника Рело
Треугольник Рёло можно построить с помощью одного только циркуля, не прибегая к линейке. Это построение сводится к последовательному проведению трёх равных окружностей. Центр первой выбирается произвольно, центром второй может быть любая точка первой окружности, а центром третьей — любая из двух точек пересечения первых двух окружностей.
Основные геометрические характеристики
1. Треугольник Рёло – также как и круг — кривая постоянной ширины.
Данные утверждения проверены опытным путем, вращением трех геометрических фигур между двумя опорными прямыми:
Рисунок 3. Доказательство постоянства ширины
2. Периметр треугольника Рело и совпадает с периметром круга. Формула доказана опытным путем рис. 2, в математике носит название теоремы Барбье.
Рисунок 4. Определение периметра круга и треугольника Рело
3. Площадь Также как и обычный треугольник, круг, треугольник Рёло является плоской выпуклой геометрической фигурой, которая имеет определенную площадь, которая может быть вычислена по формуле . Формула выведена аналитическим методом, используя соотношение: S=Scегм , и методом разрезания и сложения площадей (рис. 5). S=Scегм
S=
cегм=Sсект — S=
SРело=— =(.
Следовательно, площадь треугольника Рело равна
SРело=(
Площадь треугольника Рело меньше площади круга.
Рисунок 5. Определение площади треугольника Рело
Среди всех фигур постоянной ширины у треугольника Рёло наименьшая площадь. Это утверждение носит название теоремы Бляшке — Лебега (по фамилиям немецкого геометра Вильгельма Бляшке, опубликовавшего теорему в 1915 году, и французского математика Анри Лебега, который сформулировал её в 1914 году SРело=(
Фигура, обладающая противоположным экстремальным свойством — круг. Среди всех фигур данной постоянной ширины его площадь
Sкруга= максимальна
Площадь соответствующего треугольника Рёло меньше на ≈10,27 %. В этих пределах лежат площади всех остальных фигур данной постоянной ширины.
Треугольник Рёло обладает осевой и центральной симметрией
5. Замечательные точки треугольника
Центры вписанной, описанной окружностей, ортоцентр и центр тяжести совпадают. Сумма радиусов вписанной и описанной окружностей равна ширине треугольника Рело. )a (рис. 4 )
Рисунок 6. Замечательные точки
6. Треугольник Рело можно вписать в квадрат, он может вращаться квадрате со стороной а, всё время касаясь каждой из сторон. В работе
рассмотрена траектория движения вершины треугольника при вращении в квадрате и при движении треугольника по прямой. Показано, что так же как и у круга, траектория движения по прямой – циклоида.
Каждая вершина треугольника при его вращении в квадрате «проходит» почти весь периметр квадрата, отклоняясь от этой траектории лишь в углах — там вершина описывает дугу эллипса. Центр треугольника Рёло при вращении движется по траектории, составленной из четырёх одинаковых дуг эллипсов. Центры этих эллипсов расположены в вершинах квадрата, а оси повёрнуты на угол в 45° относительно сторон квадрата и равны
а*(1)
Траектория центра треугольника Рёло при вращении в квадрате. Выделены точки сопряжения четырёх дуг эллипсов. Для сравнения показана окружность (синим цветом), проходящая через эти же четыре точки
Рисунок 7 Траектории движения треугольника в квадрате
На фигурах 2, 6, 10 треугольник катится по поверхности окружности, на фигурах 4, 8, 12 треугольник переваливается через вершину, на остальных фигурах происходит смена характера движения треугольника с качения на переваливание и наоборот. Рассмотрим движение вершины треугольника. На фигурах 1, 2, 3 помеченная вершина движется линейно, по прямой (Рис. 10). Фактически помеченная вершина является центром вращения окружности, элементом которой является поверхность стороны треугольника Рело. На фигуре 3 помеченная вершина меняет траекторию движения с прямолинейной на траекторию движения по окружности с радиусом, равным длине стороны, по которой он движется на фигурах 3, 4, 5.
На фигуре 5 происходит смена траектории движения вершины. На фигурах 5, 6, 7 вершина движется по трохоиде точки, находящейся на поверхности окружности с радиусом, равным длине стороны треугольника. На фигурах 7, 8, 9 меченная вершина является точкой перевала треугольника, она жестко лежит на поверхности. Фигуры 9, 10, 11 – опять трохоида и 11, 12, 1 – движение по окружности. По аналогии эти фигуры описаны выше. Меченая вершина возвращается в исходную точку. Треугольник Рело совершил полный оборот.
Рис 8. Движение вершины треугольника Рис 9 Движение центра треугольника.
Фигура постоянной ширины может вращаться в квадрате со стороной всё время касаясь каждой из сторон.
7. Любую плоскую фигуру диаметра можно накрыть фигурой постоянной ширины
Вывод: первоначально выдвинутая гипотеза о том, что треугольник Рело будет сочетать в себе свойства круга и равностороннего треугольника, а также характеризуется только ему присущими свойствами, подтверждена в ходе исследования.
История изобретения треугольника Рело
Треугольник Рело назван по имени Франца Рело – немецкого учёного-инженера, подробно исследовавшего его. Рело дал определение кинематической пары, кинематической цепи и механизма как кинематической цепи принуждённого движения; предложил способ преобразования механизмов путём изменения стойки и путём изменения конструкций кинематических пар. Связал теорию механизмов и машин с проблемами конструирования, например, впервые поставил и пытался решить проблему эстетичности технических объектов.
Однако, впервые эта фигура встречается XV веке в трудах Леонардо да Винчи, созданная им карта мира имеет вид четырех сферических треугольников, которые были показаны на плоскости карты треугольниками Рело, собранными по четыре вокруг полюсов.
Позднее, в XVIII веке встречается идея построения треугольника в трудах Леонардо Эйлера.
Применение треугольника Рело
Применение треугольника Рело основано на его свойствах. Основные сферы применения в технике: сверло Уаттса (сверление квадратных отверстий), роторно-поршневой двигатель Ванкеля (внутри примерно цилиндрической камеры по сложной траектории движется трёхгранный ротор-поршень – треугольник Рело), грейферный механизм в кинопроекторах (используется свойство вращения треугольника Рело в квадрате со стороной ), кулачковые механизмы паровых двигателей, швейных машин и часовых механизмов, катки для транспортировки тяжелых грузов, крышки для люков (свойство постоянной ширины), в качестве медиатора. Кроме того, еще с XIII века используется свойство симметричности и гармонии в архитектурных сооружениях на основе стрельчатых арок и элементов орнамента.
Применение в некоторых механических устройствах
В 1914 году английский инженер Гарри Джеймс Уаттс изобрёл инструмент для сверления квадратных отверстий (рис.), с 1916 года сверла находятся в серийном производстве. Сверло Уаттса представляет собой треугольник Рело, в котором заточены ржущие кромки и прорезаны углубления для отвода стружки.
Рис. 10 Сверло Уаттса и двигатель Ванкеля
Видео:Треугольник с закруглёнными углами CSS / И немного о emСкачать
Применение в автомобильных двигателях
Треугольник Рело используется и в автомобильных двигателях (рис.,). В 1957 году немецкий инженер, изобретатель Ф. Ванкель, сконструировал роторно-поршневой двигатель. Внутри примерно цилиндрической камеры по сложной траектории движется трёхгранный ротор-поршень – треугольник Рело. Он вращается так, что три его вершины находятся в постоянном контакте с внутренней стенкой корпуса, образуя три замкнутых объёма, или камеры сгорания.
Фактически каждая из трёх боковых поверхностей ротора действует как поршень. При всех достоинствах РПД — компактности, приемистости, отсутствии кривошипно-шатунного и газораспределительного механизмов, а так же значительно меньших габаритов и массе при одинаковой с поршневыми двигателями внутреннего сгорания мощности, он имеет и ряд серьезных недостатков: часто выходящие из строя уплотнительные элементы, плохая приспосабливаемость к изменениям внешней нагрузки, повышенный расход топлива и неудовлетворительные показатели по выбросам в отработавших газах. Тем не менне в серийном производстве находятся автомобили Mazda RX-8.
Поиски альтернативных видов топлива для автомобилей заставил вновь обратить внимание на роторно-поршневой двигатель Ванкеля. Разработчики Mazda уверяют, что по природе своей роторно-поршневой агрегат гораздо лучше приспособлен для работы на водороде, нежели традиционные моторы. Впрочем, по прогнозам специалистов, уже к 2025 году более четверти мирового автопарка будет использовать в качестве топлива водород. Так что возможно, будущее за РПД
Применение треугольника Рело в грейферном механизме в кинопроекторах
Устройство грейферного механизма основано на треугольнике Рело, вписанном в квадрат и двойном параллелограмме, который не дает квадрату наклоняться в стороны. Действительно, т. к. длины противоположных сторон равны, то среднее звено при всех движениях остается параллельным основанию, а сторона квадрата всегда параллельной среднему звену. Чем ближе ось крепления к вершине треугольника Рело, тем более близкую к квадрату фигуру описывает зубчик грейфера. Такой механизм обеспечивает равномерное вращение оси, чтобы на экране было четкое изображение, пленку мимо объектива надо протянуть на один кадр, дать ей постоять, потом опять резко протянуть и так 18 раз в секунду.
Крышки для люков
В форме треугольника Рёло можно изготавливать крышки для люков — опытным путем доказано, что благодаря постоянной ширине они не могут провалиться в люк. В Сан-Франциско, для системы рекуперирования воды корпуса люков имеют форму треугольника Рёло. Зак счет того, что у треугольника Рело площадь меньше, чем у круга, себестоиморсть люков в форме треугольников Рело была бы ниже, чем у традиционно круглых. Перейдя на серийное производство люклв в форме треугольника Рело, на мой взгляд, можно было бы быстрее решить проблему открытых колодцев и избежать травматизма и смертей людей.
Видео:Треугольник с закругленными углами в Adobe IllustratorСкачать
Треугольник Рёло в искусстве, архитектуре и литературе
Форма треугольника Рёло, его свойство симметричности, используется и в архитектурных целях. Конструкция из двух его дуг образует характерную для готического стиля стрельчатую арку, однако целиком он встречается в готических сооружениях довольно редко. Окна в форме треугольника Рёло использовали еще в VIII векев церкви Богоматери в Брюгге, а также в шотландской церкви в Аделаиде. Как элемент орнамента он встречается на оконных решётках цистерцианского аббатства в швейцарской коммуне Отрив (приложение 1)
Треугольник Рёло используют и в архитектуре, не принадлежащей к готическому стилю. Например, построенная в 2006 году в Кёльне 103-метровая башня под названием «Кёльнский треугольник» в сечении представляет собой именно эту фигуру.
В научно-фантастическом рассказе Пола Андерсона «Треугольное колесо» экипаж землян совершил аварийную посадку на планете, население которой не использовало колёса, так как всё круглое находилось под религиозным запретом. В сотнях километров от места посадки предыдущая земная экспедиция оставила склад с запасными частями, но перенести оттуда необходимый для корабля двухтонный атомный генератор без каких-либо механизмов было невозможно. В итоге землянам удалось соблюсти табу и перевезти генератор, используя катки с сечением в виде треугольника Рёло.
Изобретение велосипеда с треугольными колесами
Колесо, изобретенное несколько тысяч лет назад, произвело переворот в жизни человека. Постоянство ширины явилось для колеса определяющим свойством, следствием которого явилось техническое завоевание мира.
Изобретением колес велосипеда занимается китайский рационализатор Гуань Байхуа (Guan Baihua), 50-летний офицер из города Циндао. Больше того, он изобретает заново самую консервативную деталь велосипеда – колеса. Вместо понятных всем круглых он предложил кататься на колесах пяти — и треугольной формы (спереди и сзади, соответственно). Для китайцев велосипед – главный вид транспорта, популярностью затмевающий автомобили. Но велосипед с угловатыми колесами средством передвижения не станет. По словам изобретателя, поездка на нем требует больше усилий, чем на обычном велосипеде, и скорее всего, он найдет свою нишу в качестве экзотической игрушки и более эффективного тренажера. Впрочем, все, кто пробовал прокатиться на нем, удивляются вовсе не трудности кручения педалей, а неожиданной плавности хода.
Действительно, казалось бы, угловатые колеса неизбежно должны создавать при качении существенную тряску – но ее Гуаню Байхуа удалось снизить благодаря прекрасному знанию геометрии и настоящей китайской хитрости. .
Таким же образом можно устроить подвеску некруглого колеса и взяв четыре таких подвески, можно соорудить повозку. При этом она будет ехать совершенно без покачиваний! Чтоьы убедиться, что тряски нет, можно поставить, как учат автомобилистские традиции, на тележку стакан с водой.
Рисунок 11 Повозка с «треугольными» колесами.
Мы попробовали соорудить такую повозку и опытным путем проверить гипотезу об отсутствии качки.
Рисунок 12 «Треугольные» колеса.
Рисунок 13 Варианты повозки с «треугольными» колесами. Результаты эксперимента подтвердили нашу гипотезу.
Видео:Как в фотошопе нарисовать треугольник с закругленными краями - Уроки фотошопа для начинающихСкачать
Заключение
Несколько тысяч лет назад было изобретено колесо, которое произвело переворот в жизни человека. Определяющим свойством, следствием которого стало техническое завоевание мира, стало свойство постоянства ширины. Но, как оказалось, круг – не единственная фигура, которая обладает этим свойством. Вызвавший мой интерес, треугольник Рело, также принадлежит этому семейству.
В своей работе мы не только изучили его свойства, геометрические характеристики, историю изобретения, но и рассмотрели сферы применения этой выпуклой, симметричной фигуры постоянной ширины. Выдвинутая нами гипотеза о свойствах этой фигуры нашла свое подтверждение. Кроме того, мы ответили для себя на ряд вопросов познавательного характера: какие геометрические свойства обеспечивают плавность хода велосипеда с «треугольными» колесами, почему канализационные люки делают круглыми или в форме треугольника Рело?
Не менее познавательной оказалась информация о сферах применения «круглого» треугольника не только в технике, но и в архитектуре, литературе.
Таким образом, поставленные мною задачи, реализованы в полном объеме.
Перспективы дальнейшей работы в этом направлении:
1. Лежащую в основе треугольника Рело, идею построения можно обобщить для построения многоугольников Рело, используя для создания кривых постоянной ширины, не равносторонний треугольник, а звёздчатый многоугольник, образованный отрезками прямых равной длины.
2. Изучение свойств тел постоянной ширины.
Список источников информации и иллюстраций:
1. Велосипед с треугольным колесом// Материал сайта Веломастерская «Две звезды» [Электронный ресурс] — Режим доступа. — URL: http://*****/news/velosiped-s-treugolnyim-kolesom. html
Видео:1. Как закруглить углы у треугольника в Inkscape.Скачать
2. Треугольник Рёло// Материал из Википедии — свободной энциклопедии
[Электронный ресурс] — Режим доступа. — URL: http://ru. wikipedia. org/wiki/
3. Бронштейн, И. Н., Семендяев, К. А., Справочник по математике для инженеров и учащихся вузов.// – М.:Просвещение,1992.
4. Коксетер, С. М., Грейтцер, С. Л., Новые встречи с геометрией. //– М., Наука, 1978.-223с.
5. Конфорович, А. Г., Некоторые математические задачи//. – Киев, Родная школа, 1981.-189с.
6. Числа и фигуры — М., Физматгиз, 19с.
7. , Болтянский постоянной ширины // Выпуклые фигуры. — М.—Л.: ГТТИ, 1951. — С. 90—105. — 343 с.
Сайты в Интернете:
1. http://ru. wikipedia. org/wiki/%D0%A2%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA_%D0%A0%D1%91%D0%BB%D0%BE
2. http://www. *****/article/5480-kolesa-s-uglami/
3. http://www. *****/ru/etudes/mazda/
1. http://www. *****/images/upload/article/bike_1__preview2.jpg
2. http://www. *****/images/upload/article/bike_2__preview2.jpg
3. http://upload. wikimedia. org/wikipedia/commons/thumb/9/9b/Leonardo_da_Vinci%E2%80%99s_Mappamundi. jpg/220px-Leonardo_da_Vinci%E2%80%99s_Mappamundi. jpg
4. http://upload. wikimedia. org/wikipedia/commons/thumb/b/b2/Reuleaux_triangle%2C_incircle_and_circumcircle. svg/250px-Reuleaux_triangle%2C_incircle_and_circumcircle. svg. png
5. http://upload. wikimedia. org/wikipedia/commons/2/22/Rotation_of_Reuleaux_triangle. gif
6. http://upload. wikimedia. org/wikipedia/commons/thumb/2/2a/Luch2_greifer. gif/220px-Luch2_greifer. gif
7. http://upload. wikimedia. org/wikipedia/commons/thumb/b/bc/Manhole_cover_for_reclaimed_water_SFWD. JPG/220px-Manhole_cover_for_reclaimed_water_SFWD. JPG
8. http://upload. wikimedia. org/wikipedia/commons/thumb/d/d0/Reuleaux_triangles_on_a_window_of_Onze-Lieve-Vrouwekerk%2C_Bruges_2.jpg/450px-Reuleaux_triangles_on_a_window_of_Onze-Lieve-Vrouwekerk%2C_Bruges_2.jpg
9. http://upload. wikimedia. org/wikipedia/commons/thumb/2/21/Reuleaux_triangle_shaped_window_of_Sint-Salvatorskathedraal%2C_Bruges. jpg/125px-Reuleaux_triangle_shaped_window_of_Sint-Salvatorskathedraal%2C_Bruges. jpg
10. http://upload. wikimedia. org/wikipedia/commons/thumb/3/35/Reuleaux_triangles_on_a_window_of_Saint_Michael_church%2C_Luxembourg. jpg/800px-Reuleaux_triangles_on_a_window_of_Saint_Michael_church%2C_Luxembourg. jpg
11. http://upload. wikimedia. org/wikipedia/commons/thumb/9/9c/K%C3%B6lnTriangle_%28Flight_over_Cologne%29.jpg/125px-K%C3%B6lnTriangle_%28Flight_over_Cologne%29.jpg
12. http://upload. wikimedia. org/wikipedia/commons/thumb/e/eb/Reuleaux_triangles_on_a_window_of_Sint-Baafskathedraal%2C_Ghent_2.jpg/125px-Reuleaux_triangles_on_a_window_of_Sint-Baafskathedraal%2C_Ghent_2.jpg
13. http://upload. wikimedia. org/wikipedia/commons/thumb/4/4a/Reuleaux_triangle_shaped_window_of_Onze-Lieve-Vrouwekerk%2C_Bruges. jpg/125px-Reuleaux_triangle_shaped_window_of_Onze-Lieve-Vrouwekerk%2C_Bruges. jpg
Использование треугольника Рело в архитектуре
Окно церкви Богоматери в Брюгге
Окно собора Святого Сальватора в Брюгге
Окно собора Парижской Богоматери
Окно церкви Святого Михаила в Люксембурге
Окно церкви Богоматери в Брюгге
Окно собора Святых Михаила и Гудулы в Брюсселе
Видео:ПОЛЕЗНЫЙ УРОК. Как скруглить углы у любого объекта в Корел 2019. Corel DRAWСкачать
Треугольник с закругленными углами
1. Введение 3 стр.
2. Основная часть 5 стр.
3. Эксперимент 9 стр.
4. Заключение 11 стр.
5. Литература 12 стр.
6. Приложения 13 стр.
Введение
Проблема: При изучении темы «треугольники» уроках геометрии я узнал, что среди них можно выделить: равнобедренные ,равносторонние, прямоугольные.
Однако, посмотрев телепередачу «Галилео», я с удивлением обнаружил существование «круглого» треугольника
Для того, чтобы выяснить, знают ли ученики нашей школы о «круглом» треугольнике, aмною был проведен опрос. Было опрошено 70 учащихся 7-11 классов. (Анкета. Приложение 1.)Опрос показал, что два человека имеют представление о треугольнике, а желают узнать о таком треугольнике почти 92% опрошенных. Таким образом, понятно, что учащиеся желают узнать для себя новый материал, который не изучается в школьной программе.
Фигура треугольника Рёло меня заинтересовала, и я решил разобраться в его свойствах и способах применения.
Актуальность:
Исторически геометрия начиналась с треугольника, поэтому треугольник не только символ геометрии, но и атом геометрии. Постоянно открываются все новые и новые свойства треугольника. Чтобы рассказать обо всех известных его свойствах, потребуется том величиной в несколько тысяч страниц.
Геометрия треугольника дает возможность почувствовать красоту математики вообще и может стать для кого-то началом пути в «большую науку». Каждый любитель геометрии треугольника имеет возможность открыть нечто новое и пополнить её сокровищницу собственной драгоценной находкой, ибо геометрия поистине неисчерпаема.
В современном мире при быстро развивающихся технологиях нельзя обойти фигуру постоянной ширины – треугольника Рёло, позволяющего сократить затраты при производстве, к примеру, при конструировании деталей.
Практическая значимость моего исследования заключается в том, что удивительные свойства треугольника Рёло позволяют сделать новые открытия в разных областях жизнедеятельности человека: механике, искусстве и др.
Объект исследования: треугольник Рёло
Предмет исследования: практическое применение свойствтреугольника Рёло.
Цель: доказать, чтогеометрия необходима в практической жизни, знание этой науки раскрывает возможности деятельности человека.
Задачи:
1. Узнать, что такое треугольник Рёло?
2. Выделить его основные свойства.
3. Определить, где встречается треугольник Рёло, применение его свойств.
Гипотеза: У треугольника Рёло есть свои уникальные свойства, которые могут использоваться в разных областях жизнедеятельности человека.
Методы работы: изучение научной литературы, опрос, наблюдение, анализ, эксперимент.
Основная часть.
Изучив научную литературу в Интернет-ресурсе, я узнал, что название фигуры происходит от фамилии немецкого механика Франца Рёло (1829 – 1905) Наверное, именно он был первым, кто исследовал свойства этого треугольника; и использовал его в своих механизмах. В 1852 г. он окончил политехникум в Карлсруэ, с 1856г. был профессором Политехнического института в Цюрихе, а в 1864—1896 г. профессором Промышленного института (позже — Высшая техническая школа) в Берлине. В 1875 г. Франц Рёло впервые четко дал определение кинематической пары, кинематической цепи и механизма как кинематической цепи принуждённого движения; предложил способ преобразования механизмов путём изменения стойки и путём изменения конструкций кинематических пар. Впервые поставил и пытался решить проблему эстетичности красоты технических объектов, поэтому, современники Рёло называли его поэтом в технике. Творчество Рёло оказало значительное влияние на последующие исследования по теории механизмов. (Приложение 2)
Рёло не является первооткрывателем этой фигуры, хотя он и подробно исследовал её. Но он рассматривал вопрос о том, сколько контактов (в кинематических парах) необходимо, чтобы предотвратить движение плоской фигуры, и на примере искривлённого треугольника, вписанного в квадрат, показал, что даже трёх контактов может быть недостаточно для того, чтобы фигура не вращалась.
Некоторые математики считают, что первым продемонстрировал идею треугольника из равных дуг окружности Леонард Эйлер в XVIII веке.
Хотя эта фигура встречается и раньше, в XV веке: её использовал в своих рукописях Леонардо да Винчи. Треугольник Рёло есть в его манускриптах A и B, хранящихся в Институте Франции, а также в Мадридском кодексе.
Итак, что же такое «круглый» треугольник?
Треугольник Рёло представляет собой область пересечения трех равных кругов с центрами в вершинах правильного треугольника и радиусами, равными его стороне. Его можно построить с помощью одного только циркуля, не прибегая к линейке. Это построение сводиться к последовательному проведению трех равных окружностей. Нужно провести две окружности с одинаковым радиусом, но так, чтобы центр второй совпадал с одной из точек первой (кроме центра). Проводим третью окружность, так что бы её центр совпадал с точкой пересечения первых окружностей (Приложение 3). Область, которая принадлежит всем трем кругам и есть треугольник Рёло.
Каковы же свойства этой фигуры?
Треугольник Рёло, является фигурой постоянной ширины. Это значит, что если провести две параллельные прямые на некотором расстоянии, то фигура при качении (когда фигура будет катиться) будет касаться обеих прямых постоянно. Расстояние между ними и будет фигура постоянной ширины. Простейшей такой фигурой будет всем известный круг, хотя таких фигур немало. Среди этих фигур наименьшая площадь именно у треугольника Рёло. Это утверждение носит название теоремы Бляшке — Лебега. (по фамилиям немецкого геометра Вильгельма Бляшке и французского математика Анри Лебега) К примеру, если его вписать в круг, то разница очевидна (Приложение 4). Площадь соответствующего треугольника Рёло меньше на ≈ 10,27%
Треугольник Рёло является плоскойвыпуклойгеометрической фигурой.
Через каждую вершину треугольника Рёло, в отличие от остальных его граничных точек, проходит не одна опорная прямая, а бесконечное множество опорных прямых. Пересекаясь в вершине, они образуют «пучок». Угол между крайними прямыми этого «пучка» называется углом при вершине. Для фигур постоянной ширины угол при вершинах не может быть меньше 120°. Единственная фигура постоянной ширины, имеющая углы, равные в точности 120° — это треугольник Рёло.
Любую фигуру постоянной ширины можно вписать вквадрат со стороной, равной ширине фигуры, причём направление сторон квадрата может быть выбрано произвольно. Треугольник Рёло — не исключение, он вписан в квадрат и может вращаться в нём, постоянно касаясь всех четырёх сторон. (Приложение 5)
Каждая вершина треугольника при его вращении «проходит» почти весь периметр квадрата, отклоняясь от этой траектории лишь в углах.
Этими свойствами обусловлено практическое применение треугольника Рёло. Разница с площадью квадрата составляет ≈1,2 %, поэтому на основе треугольника Рёло создаютсвёрла, позволяющие получать у треугольника почти квадратные отверстия. Отличие таких отверстий от квадрата состоит лишь в немного скруглённых углах. Другая особенность подобного сверла заключается в том, что его центр при вращении не остаётся на месте, как это происходит в случае традиционных спиральных свёрл, а описывает кривую, состоящую из четырёх дуг эллипсов. Поэтому патрон, в котором зажато сверло, не должен препятствовать этому движению.(Приложение 6)
Впервые сделать подобную конструкцию удалось Гарри Уаттсу, английскому инженеру, работавшему в США.
Треугольник Рёло используется и в автомобильных двигателях. Их называют роторно-поршневыми. Первым такой двигатель создал в 1957 г. немецкий инженер Ф. Ванкель. Ротор этого двигателя выполнен в виде треугольника Рёло. Он вращается внутри камеры. Вал ротора жёстко соединён с зубчатым колесом, которое сцеплено с неподвижной шестернёй. Такой трёхгранный ротор обкатывается вокруг шестерни, всё время касаясь вершинами внутренних стенок двигателя и образуя три области переменного объёма, каждая из которых по очереди является камерой сгорания. Благодаря этому двигатель выполняет три полных рабочих цикла за один оборот.(Приложение 7)
Двигатель Ванкеля позволяет осуществить любой четырёхтактный термодинамический цикл без применения механизма газораспределения. Смесеобразование, зажигание, смазка, охлаждение и пуск в нём принципиально такие же, как у обычных поршневых двигателей внутреннего сгорания.
Треугольник использовался в грейферном механизме в кинопроекторах. Двигатели дают равномерное вращение оси, а чтобы на экране было четкое изображение, пленку мимо объектива надо протянуть на один кадр, дать ей постоять, потом опять резко протянуть и так 18 раз в секунду. Именно эту задачу решает грейферный механизм.(Приложение 8,9 )
Треугольник Рёло широко применяется в кулачковых механизмах швейных машин зигзагообразной строчки.
В качестве кулачка треугольник Рёло использовали немецкие часовые мастера в механизме наручных часов A. Lange & Söhne «Lange 31»
Треугольник Рёло — распространённая форма медиатора— тонкой пластинки, предназначенной для приведения в состояние колебания струн щипковых музыкальных инструментов.
В форме треугольника Рёло можно изготавливатькрышки для люков— благодаря постоянной ширине они не могут провалиться в люк(так же люки использовались и в Сан — Франциско).(Приложение 10 )
В 1514 г. Леонардо да Винчи создал одну из первых в своём роде карт мира. Поверхность земного шара на ней была разделена экватором и двумя меридианами (угол между плоскостями этих меридианов равен 90°) на восемь сферических треугольников, которые были показаны на плоскости карты треугольниками Рёло, собранными по четыре вокруг полюсов. (Приложение 11)
Форма треугольника Рёло используется и в архитектурных целях. Конструкция из двух его дуг образует характерную для готического стиля стрельчатую арку, однако целиком он встречается в готических сооружениях довольно редко. Окна в форме треугольника Рёло можно обнаружить в церкви Богоматери в Брюгге, а так же в шотландской церкви в Аделаиде. Как элемент орнамента он встречается на оконных решетках аббатства в швейцарской коммуне Отрив.
Треугольник Рёло используют и в архитектуре, не принадлежащей к готическому стилю. Например, построенная в 2006 году в Кёльне 103-метровая башня под названием «Кёльнский треугольник» в сечении представляет собой именно эту фигуру. (Приложение 12,13,14)
Треугольник Рёло используется в изготовлении монет . Так уже не один, а несколько, объединенных в семиугольник.
Среди всех многоугольников Рёло с фиксированным числом сторон и одинаковой шириной правильные многоугольники ограничивают наибольшую площадь.
Форма таких многоугольников используется в монетном деле: монеты ряда стран. Например, монет 20 и 50 пенсов Великобритании выполнены в виде правильного семиугольника Рёло. Существует изготовленный китайским офицером велосипед, колёса которого имеют форму правильных треугольника и пятиугольника Рёло. (Приложение 15)
В научно-фантастическом рассказе Пола Андерсона «Треугольное колесо» экипаж землян совершил аварийную посадку на планете, население которой не использовало колёса, так как всё круглое находилось под религиозным запретом. В сотнях километров от места посадки предыдущая земная экспедиция оставила склад с запасными частями, но перенести оттуда необходимый для корабля двухтонный атомный генератор без каких-либо механизмов было невозможно. В итоге землянам удалось соблюсти табу и перевезти генератор, используя катки с сечением в виде треугольника Рёло.
Эксперимент
Тема: «Изготовление катка с сечением в виде треугольника Рёло»
Цель: исследование практического выполнения и применения свойств треугольника Рёло на примере катка; может ли треугольник Рёло быть круглым и использоваться для перемещения грузов
🔥 Видео
Как скруглить углы в иллюстраторе - Rounded Corner | Урок Adobe IllustratorСкачать
Как скруглить углы в фотошопеСкачать
Как сделать скругленные углы в фотошопеСкачать
Как сделать закругленный прямоугольник в фотошопе - Уроки фотошопа для начинающихСкачать
Как закруглить углы в Фотошопе?Скачать
КАК НАРИСОВАТЬ ТРЕУГОЛЬНИК В ПРОГРАММЕ ADOBE ILLUSTRATOR.Скачать
Геометрические фигуры на HTML и CSS // Треугольник стрелка круг трапеция и другиеСкачать
Blender 3d.Как сделать фаску или скругление.Скачать
Соотношения между сторонами и углами треугольника. 7 класс.Скачать
Скруглить углы в 3D MaxСкачать
Сопряжение двух пересекающихся прямых. Урок 9. (Часть 1. ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ)Скачать
Как закруглить углы у картинки в html | Уроки HTML, CSSСкачать
Только 1 может решить эту хитрую задачу ★ Найдите углы треугольника ★ Супер ЖЕСТЬСкачать
Круглый треугольникСкачать