Вектора i j k чему равны

Единичный вектор

Единичный вектор (орты координатных осей) — это вектор, длина которого равна единице.

Вектора i j k чему равны

i — единичный вектор оси абсцисс;

j — единичный вектор оси ординат;

k — единичный вектор оси аппликат.

ijk, i=j=k=1

В прямоугольной системе координат в пространстве координаты векторов равны:

i(1;0;0), j(0;1;0), k(0;0;1)

Единичные векторы являются некомпланарными.

Любой вектор можно разложить в виде вектора по ортам координатных осей, формула ниже.

a=xij+zk

где x, y, z — координаты вектора проекции на соответствующие координатные оси.

Эта формула называется разложением вектора по ортам координатных осей.

Единичный вектор определяется по формуле:

Вектора i j k чему равны

Дан вектор а = (1; 2; -2)

Требуется найти длину (модуль) и единичный вектор e направления вектора а

Находим длину вектора a

затем вычисляем единичный вектор e

Видео:Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Векторное произведения единичных векторов

Если направление кратчайшего пути от первого вектора ко второму вектору совпадает с направлением стрелки, то произведение равно третьему вектору, а если не совпадает, то третий вектор берется со знаком «минус» . Смотрите схему 1.

Вектора i j k чему равны

На основании схемы получаем таблицу векторного произведения единичных векторов

Пример 1
Найти векторное произведение iхj, где i, j — единичные векторы (орты) правой системы координат.

Вектора i j k чему равны

Решение
1) Так как длины основных векторов равны единице масштаба, то площадь параллелограмма MOKT численно равна единице. Значит, модуль векторного произведения равен единице.
2) Так как перпендикуляр к плоскости MOKT есть ось OZ, то искомое векторное произведение есть вектор, коллинеарный с вектором k; а так как оба они имеют модуль 1, то искомое векторное произведение равно либо k, либо -k.
3) Из этих двух возможных векторов надо выбрать первый, так как векторы i, j, k образуют правую систему (а векторы i, j, -k — левую).

iхj=k

Пример 2
Найти векторное произведение jхi.

Решение
Как в примере 1, заключаем, что вектор jхi равен либо k, либо —k. Но теперь надо выбрать -k, ибо векторы j, i, —k образуют правую систему (а векторы i, j, —k -левую).
jхi = −k

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 3.5 / 5. Количество оценок: 4

Видео:Единичный векторСкачать

Единичный вектор

Координаты и компоненты вектора

Вектора i j k чему равны

Вектора i j k чему равны

По этой ссылке вы найдёте полный курс лекций по математике:

Выберем в пространстве прямоугольную декартову систему координат. Обозначим через i, j, к единичные векторы (орты) положительных направлений осей Ох. Оу, Oz (рис. 19). Рассмотрим произвольный вектор а, начало которого лежит в начале координат О, а коней — в точке А. Проведем через точку А плоскости, перпендикулярные .осям Ох, Оу и Oz. Эти плоскости пересекут координатные оси в точках Ру Q и R соответственно.

Из рис. 20 видно, что Векторы OP, OQ и OR коллинеарны соответственно единичным векторам i, j, k. поэтому найдутся числа х, у, 2 такие, что и, следовательно, Координаты и компоненты вектора Формула (2) называется разложением вектора и по век/порам i, j, к. Указанным способом всякий вектор может быть разложен по векторам i, j, k. Векторы i, j, k попарно ортогональны, и их длины равны единице. Тройку i, j, k называют ортонормированным (координатным) базисом (ортобазисом).

Можно показать, что для каждого вектора а разложение (2) по базису i, j, к единственно, т. с. коэффициенты!, у, z в разложении вектора а по векторам i, j, к определены однозначно.

Эти коэффициенты называются координатами вектора а. Они совпадают с координатами х, у, z точки Л — конца вектора а. Мы пишем в этом случае Эта запись означает, что свободный вектор а однозначно задастся упорядоченной тройкой своих координат. Векторы х, t/j, zk, сумма которых равна вектору а, называются компонентами вектора а.

Возможно вам будут полезны данные страницы:

Из вышеизложенного следует, что два вектора а = и Ь = равны тогда и только тогда, когда соответственно равны их координаты, т. с. Пусть а = , b = — коллинеарные векторы, причем b Ф 0. Тогда л = цЬ, т.е. Координаты и компоненты вектора Обратно, если выполняются соотношения (3), то п = цЬ, т. е. векторы а и b коллинеарны.

Таким образом, векторы

а и b коллинеарны тогда и только тогда, когда их координаты пропорциональны. Пример. Найти координаты вектора MMi, начало которого находится в точке М(х, у, z). а конец — в точке Afi(«2> 22). Из рис. 22 видно, что ММг = Г2 — п, где р,, р2 — радиус-векторы точек М| и Мг соответственно. Поэтому — координаты вектора ММг равны разностям одноименных координат конечной М^ и начальной М точек этого вектора.

Присылайте задания в любое время дня и ночи в ➔ Вектора i j k чему равныВектора i j k чему равны

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Векторное произведение векторов

Вектора i j k чему равны

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Видео:Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать

Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)

Определение векторного произведения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Вектора i j k чему равны

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.

Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.

Вектора i j k чему равны

Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.

Вектора i j k чему равны

В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

  • он является нулевым, если векторы →a и →b коллинеарны;
  • он перпендикулярен и вектору →a и вектору →b;
    Вектора i j k чему равны
  • длина векторного произведения равна произведению длин векторов →a и →b на синус угла между ними
    Вектора i j k чему равны
  • тройка векторов →a, →b, →c ориентирована так же, как и заданная система координат.

Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.

Вектора i j k чему равны

Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

  • Вектора i j k чему равны
  • Вектора i j k чему равны

Векторное произведение векторов →a и →b обозначается как [→a • →b].

Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.

Вектора i j k чему равны

Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

  • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
  • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
  • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Координаты векторного произведения

Рассмотрим векторное произведение векторов в координатах.

Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор

Вектора i j k чему равны

→i, →j, →k — координатные векторы.

Это определение показывает нам векторное произведение в координатной форме.

Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:

Вектора i j k чему равны

Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:

Вектора i j k чему равны

Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

Видео:Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Свойства векторного произведения

Векторное произведение в координатах представляется в виде определителя матрицы:

Вектора i j k чему равны

На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:

  1. Антикоммутативность
    Вектора i j k чему равны
  2. Свойство дистрибутивности
    Вектора i j k чему равны

Вектора i j k чему равны
Сочетательное свойство
Вектора i j k чему равны

Вектора i j k чему равны

, где λ произвольное действительное число.

Для большей ясности докажем свойство антикоммутативности векторного произведения.

Вектора i j k чему равны

Вектора i j k чему равны

Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому

Вектора i j k чему равны

что доказывает свойство антикоммутативности векторного произведения.

Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

Видео:Вектора с равными координатамиСкачать

Вектора с равными координатами

Примеры решения задач

Пример 1

а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:

Вектора i j k чему равны

Вектора i j k чему равны

Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:

Вектора i j k чему равны

Вектора i j k чему равны

Пример 2

Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

По условию снова нужно найти длину векторного произведения. Используем нашу формулу:

Вектора i j k чему равны

Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.

Вектора i j k чему равны

Пример 3

Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

Сначала найдём векторы:

Вектора i j k чему равны

Затем векторное произведение:

Вектора i j k чему равны

Вычислим его длину:

Вектора i j k чему равны

Подставим данные в формулы площадей параллелограмма и треугольника:

Вектора i j k чему равны

Вектора i j k чему равны

Видео:Векторное произведение векторов | Высшая математикаСкачать

Векторное произведение векторов | Высшая математика

Геометрический смысл векторного произведения

По определению длина векторного произведения векторов равна

Вектора i j k чему равны

А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.

Вектора i j k чему равны

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Физический смысл векторного произведения

В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].

Вектора i j k чему равны

Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

📹 Видео

18+ Математика без Ху!ни. Векторное произведение.Скачать

18+ Математика без Ху!ни. Векторное произведение.

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Равенство векторов. 9 класс.Скачать

Равенство векторов. 9 класс.

Орт вектора. Нормировать вектор. Найти единичный векторСкачать

Орт вектора.  Нормировать вектор.  Найти единичный вектор

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

Физика | Ликбез по векторамСкачать

Физика | Ликбез по векторам

§19 Выражение смешанного произведения через координатыСкачать

§19 Выражение смешанного произведения через координаты

Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.
Поделиться или сохранить к себе: