Хорды окружности стягивают равные дуги

Видео:№656. Хорда АВ стягивает дугу, равную 115°, а хорда АС — дугу в 43°. Найдите угол ВАС.Скачать

№656. Хорда АВ стягивает дугу, равную 115°, а хорда АС — дугу в 43°. Найдите угол ВАС.

Хорды окружности стягивают равные дуги

ОКРУЖНОСТЬ И КРУГ. ЦИЛИНДР.

§ 71. ЗАВИСИМОСТЬ МЕЖДУ ХОРДАМИ И ДУГАМИ.

Докажем ряд теорем, устанавливающих зависимость между хордами и их дугами в одной и той же окружности или в равных окружностях.

При этом будем иметь в виду дуги, меньшие полуокружности.

Теорема 1. Равные дуги стя гиваются равными хордами.

Пусть дуга АВ равна дуге СК. Требуется доказать, что и хорда АВ равна хорде СК (черт. 314).

Хорды окружности стягивают равные дуги

Доказательство. Соединим концы хорд с центром окружности — точкой О. Полученные треугольники АОВ и КОС равны, так как имеют по две соответственно равные стороны (радиусы одной окружности) и по равному углу, заключённому между этими сторонами (эти углы равны, как центральные, соответствующие равным дугам). Следовательно, АВ = СК.

Теорема 2 (обратная). Равные хорды стягивают равные дуги.

Пусть хорда АВ равна хорде СК. Требуется доказать, что дуга АВ равна дуге СК (черт. 314).

Доказательство. Соединим концы хорд с центром окружности— точкой О. Полученные треугольники АОВ и КОС равны по трём соответственно равным сторонам. Следовательно, равны углы АОВ и СОК; но углы эти центральные, соответствующие дугам АВ и СК; из равенства этих углов следует равенство дуг: Хорды окружности стягивают равные дугиАВ = Хорды окружности стягивают равные дугиСК.

Теорема 3. Большая дуга стягивается и большей хордой.

Пусть дуга АВ больше дуги СК (черт. 315).

Хорды окружности стягивают равные дуги

Требуется доказать, что хорда АВ больше хорды СК.

Доказательство. Передвинем по окружности дугу СК так, чтобы точка К совместилась с точкой А, тогда точка С займёт положение С’ на дуге АВ между точками A и В, дуга СК примет положение дуги АС’, а хорда СК примет положение хорды АС’. Проведём радиусы в точки A, В и С’. Опустим из центра О перпендикуляры ОЕ и ОD на хорды АВ и АС’. В треугольнике ОFE отрезок ОЕ — катет , а отрезок ОF — гипотенуза, поэтому OF > ОЕ, а потому и OD > OE.

Рассмотрим теперь треугольники ОАD и ОАЕ. В этих треугольниках гипотенуза ОА общая, а катет ОЕ меньше катета ОD, тогда по следствию из теоремы Пифагора (§ 58) катет АЕ больше катета АD. Но эти катеты составляют половины хорд АВ и АС’, значит, и хорда АВ больше хорды АС’. Вследствие равенства хорд АС’ и СК получаем
АВ > СК.

Теорема 4 (обратная). Большая хорда стягивает и большую дугу.

Пусть хорда А В больше хорды СК.

Требуется доказать, что дуга АВ больше дуги СК (черт. 315). Между дугами АВ и СК может существовать только одно из трёх следующих соотношений:

Хорды окружности стягивают равные дугиАВ Хорды окружности стягивают равные дугиСК.

Но дуга AВ не может быть меньше дуги СК, так как тогда по прямой теореме хорда АВ была бы меньше хорды СК, а это противоречит условию теоремы.

Дуга АВ не может быть равна дуге СК, так как тогда хорда АВ равнялась бы хорде СК, а это тоже противоречит условию. Следовательно, Хорды окружности стягивают равные дугиАВ > Хорды окружности стягивают равные дугиСК.

Видео:Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)Скачать

Геометрия 8 класс (Урок№28 - Свойства хорд окружности.)

Равные хорды

Выясним, какими свойствами обладают равные хорды и равные дуги.

Равные хорды равноудалены от центра окружности.

Хорды окружности стягивают равные дугиДано : окр. (O;R), AB и CD — хорды,

Хорды окружности стягивают равные дугиСоединим центр окружности с концами хорд.

I. Рассмотрим треугольники AOB и COD.

1) AB=CD (по условию)

2) OA=OB=OC=OD (как радиусы).

Следовательно, ∆AOB = ∆COD (по трём сторонам).

Из равенства треугольников следует равенство соответствующих углов: ∠A=∠C.

II. Рассмотрим прямоугольные треугольники AOF и COK.

2) ∠A=∠C (по доказанному).

Из равенства треугольников следует равенство соответствующих сторон: OF=OK.

Что и требовалось доказать .

Если хорды равноудалены от центра окружности, то они равны.

Хорды окружности стягивают равные дугиДано: окр. (O;R), AB и CD — хорды,

Соединим центр окружности с концами хорд.

I. Рассмотрим прямоугольные треугольники OKD и OFB.

1)OF=OK (по условию)

2)OD=OB (как радиусы).

Из равенства треугольников следует равенство соответствующих сторон:

II. Рассмотрим треугольники AOB и COD.

Так как OA=OB=OC=OD (как радиусы), треугольники AOB и COD — равнобедренные с основаниями AB и CD и высотами OK и OF соответственно.

По свойству равнобедренного треугольника, OK и OF — медианы, то есть AF=BF, CK=DK, откуда AB=CD.

Что и требовалось доказать.

Равные хорды стягивают равные дуги.

Хорды окружности стягивают равные дуги

Дано : окр. (O;R), AB и CD — хорды, AB=CD,

Хорды окружности стягивают равные дугиСоединим центр окружности с концами хорд.

Рассмотрим треугольники AOB и COD

1) AB=CD (по условию)

2) OA=OB=OC=OD (как радиусы).

Следовательно, ∆AOB = ∆COD (по трём сторонам).

Из равенства треугольников следует равенство соответствующих углов: ∠AOB=∠COD.

Значит и дуги, на которые опираются эти центральные углы, также равны: ∪AB=∪CD

Что и требовалось доказать .

Хорды, стягивающие равны дуги, равны.

Хорды окружности стягивают равные дугиДано: окр. (O;R), AB и CD — хорды,

Соединим центр окружности с концами хорд.

Рассмотрим треугольники AOB и COD

Так как OA=OB=OC=OD (как радиусы), то треугольники AOB и COD — равнобедренные с основаниями AB и CD соответственно.

Так как ∪AB=∪CD (по условию), то ∠AOB=∠COD.

Из равенства треугольников следует равенство соответствующих сторон: AB=CD.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Что такое хорда окружности в геометрии, её определение и свойства

Хорды окружности стягивают равные дугиХорда в переводе с греческого означает «струна». Это понятие широко применяется в разных областях науки — в математике, биологии и других.

В геометрии для термина определение будет следующим: это отрезок прямой линии, который соединяет между собой две произвольные точки на одной окружности. Если такой отрезок пересекает центр кривой, она называется диаметром описываемой окружности.

Видео:ГЕОМЕТРИЯ (урок 14) окружности, дуги, хордыСкачать

ГЕОМЕТРИЯ (урок 14) окружности, дуги, хорды

Как построить геометрическую хорду

Чтобы построить этот отрезок, прежде всего необходимо начертить круг. Обозначают две произвольные точки, через которые проводят секущую линию. Отрезок прямой, который располагается между точками пересечения с окружностью, называется хордой.

Если разделить такую ось пополам и из этой точки провести перпендикулярную прямую, она будет проходить через центр окружности. Можно провести обратное действие — из центра окружности провести радиус, перпендикулярный хорде. В этом случае радиус разделит её на две идентичные половины.

Если рассматривать части кривой, которые ограничиваются двумя параллельными равными отрезками, то эти кривые тоже будут равными между собой.

Видео:Равные хорды, равные дугиСкачать

Равные хорды, равные дуги

Свойства

Существует ряд закономерностей, связывающих между собой хорды и центр круга:

  1. Хорды окружности стягивают равные дугиЕсли расстояния от хорд до центра равны между собой, то такие хорды тоже равны между собой.
  2. Существует также обратная зависимость — если длины отрезков равны между собой, то расстояния от них до центра тоже будут равными.
  3. Чем большую длину имеет стягивающий отрезок прямой, тем меньше расстояние от него до центра окружности. И наоборот, чем она меньше, чем расстояние от указанного отрезка до центра описываемого круга больше.
  4. Чем больше расстояние от «струны» до центра, тем меньше длина этой оси. Справедливой будет также и обратная взаимосвязь — чем меньше расстояние от центра до хорды, тем больше длина.
  5. Хорда в геометрии, которая имеет максимально возможную для этой окружности длину, называется диаметром круга. Такая ось проходит через центр и делит её на две равные части.
  6. Отрезок с наименьшей длиной представляет собой точку.
  7. Если ось представляет собой точку, то расстояние от неё до центра круга будет равняться радиусу.

Видео:Окружнось. Зависимость длины хорды, от длины дуги.Скачать

Окружнось. Зависимость длины хорды, от длины дуги.

Взаимосвязь с радиусом и диаметром

Вышеуказанные математические понятия связаны между собой следующими закономерностями:

  1. Хорды окружности стягивают равные дугиЕсли описываемый отрезок не является диаметром этого круга, и этот диаметр делит его пополам, то эта ось и диаметр перпендикулярны между собой.
  2. С другой стороны, диаметр, который перпендикулярен любой произвольной стягивающей, делит её на две равные части.
  3. Если ось не является диаметром, и последний делит её на две равные части, то он делит пополам и обе дуги, которые стянуты этим отрезком.
  4. Если диаметр делит на две одинаковые части дугу, то этот же диаметр делит пополам отрезок, который эту дугу стягивает.
  5. Если диаметр строго перпендикулярен описываемой величине, то он делит на две половины каждую дугу, которую ограничивает эта линия.
  6. Если диаметр круга делит пополам отрезок кривой, то он располагается перпендикулярно оси, которая этот отрезок стягивает.

Видео:Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

Хорда и радиус

Между этими понятиями существуют следующие связи:

  1. Хорды окружности стягивают равные дугиЕсли стягивающий отрезок не служит диаметром круга, и радиус разделяет её пополам, то такой радиус является перпендикулярным ей.
  2. Существует также обратная зависимость — радиус, который перпендикулярен оси, делит её на две одинаковые составные части.
  3. Если ось не выступает диаметром этого круга, и радиус делит её пополам, то этот же радиус делит пополам и дугу, которая стягивается.
  4. Радиус, который делит пополам дугу, также делит и отрезок, который эту дугу стягивает.
  5. Если радиус является перпендикулярным стягивающей линии, то он делит пополам часть кривой, которую она ограничивает.
  6. Если радиус окружности разделяет на две идентичные части дугу, то он является перпендикулярным линии, которая эту дугу стягивает.

Видео:8 класс, 33 урок, Градусная мера дуги окружностиСкачать

8 класс, 33 урок, Градусная мера дуги окружности

Отношения со вписанными углами

Углы, вписанные в окружность, подчиняются следующим правилам:

  1. Хорды окружности стягивают равные дугиЕсли углы, вписанные в окружность, опираются на одну и ту же линию, и их вершины расположены по одну сторону, то такие углы равны между собой.
  2. Если два вписанных в круг угла опираются на одну и ту же линию, но их вершины расположены по разные стороны этой прямой, то сумма таких углов будет равняться 180 градусам.
  3. Если два угла — центральный и вписанный — опираются на единую линию, и их вершины располагаются по одну сторону от неё, то величина вписанного угла будет равняться половине центрального.
  4. Вписанный угол, который опирается на диаметр круга, является прямым.
  5. Равные между собой по размеру отрезки стягивают равные центральные углы.
  6. Чем больше величина стягивающего отрезка, тем больше величина центрального угла, который она стягивает. И наоборот, меньшая по размеру линия стягивает меньший центральный угол.
  7. Чем больше центральный угол, тем больше величина отрезка прямой, который его стягивает.

Видео:Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Длина хорды окружности равна 72 ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Взаимодействия с дугой

Если два отрезка стягивают участки кривой, одинаковые по размеру, то такие оси равны между собой. Из этого правила вытекают следующие закономерности:

  1. Хорды окружности стягивают равные дугиДве равные между собой хорды стягивают равные дуги.
  2. Если рассматривать две дуги, размер которых меньше половины окружности, то чем больше дуга, тем больше хорда, которая будет её стягивать. Напротив, меньшая дуга будет стягиваться меньшей по величине хордой.
  3. Если же дуга превышает половину окружности, то здесь присутствует обратная закономерность: чем меньше дуга, тем больше хорда, которая её стягивает. И чем больше дуга, тем меньше ограничивающая её хорда.

Хорда, которая стягивает ровно половину окружности, является её диаметром. Если две линии на одной окружности параллельны между собой, то будут равными и дуги, которые заключены между этими отрезками. Однако не следует путать заключённые дуги и стягиваемые теми же линиями.

📹 Видео

Задача 6 №27877 ЕГЭ по математике. Урок 118Скачать

Задача 6 №27877 ЕГЭ по математике. Урок 118

Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)Скачать

Расчет сегмента окружности по хорде и длине цилиндрической поверхности (трансцендентное уравнение)

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

2178 хорда AB стягивает дугу окружности в 6 градусов Найдите острый угол ABCСкачать

2178 хорда AB стягивает дугу окружности в 6 градусов Найдите острый угол ABC

Задача 6 №27859 ЕГЭ по математике. Урок 104Скачать

Задача 6 №27859 ЕГЭ по математике. Урок 104

Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)Скачать

Это Свойство Поможет Решить Задачи по Геометрии — Хорда, Окружность, Секущая (Геометрия)

ЕГЭ-2022 ||Задание №6 || Найти длину хордыСкачать

ЕГЭ-2022 ||Задание №6 || Найти длину хорды

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружностиСкачать

ДЛИНА ДУГИ окружности 9 класс Атанасян 1111 1112 длина окружности

Найти радиус окружности если известны длины пересекающихся хордСкачать

Найти радиус окружности если известны длины пересекающихся хорд

Окружнось, дуга, длина дуги, центральный угол.Скачать

Окружнось, дуга, длина дуги, центральный угол.

Радиус и диаметрСкачать

Радиус и диаметр
Поделиться или сохранить к себе: