Вектор значений для логической функции

Определение булевой функции

Булевой функцией y=f(x1, x2 . xn) от п переменных x1, x2, xn называется любая функция, в которой аргументы и функция могут принимать значение либо 0 либо 1, т.е. булева функция это правило по которому произвольному набору нулей и единиц (x1, x2 . xn) ставится в соответствие значение 0 или 1.

Булевы функции называются также функциями алгебры логики, двоичными функциями и переключательными функциями.

Булеву функцию от n переменных можно задать таблицей истинности, в которой наборы значений аргументов расположены в порядке возрастания их номеров: сначала идет набор, представляющий собой двоичное разложение 0 (этот набор имеет номер 0); затем идет набор, являющийся двоичным разложением 1, потом 2, 3 и т.д. Последний набор состоит из n единиц и является двоичным разложением числа 2 n -1 (такой порядок расположения наборов назовем лексикографическим порядком). Учитывая, что отсчет начинается с 0, а значение булевой функции может быть либо 0 либо 1, заключаем, что существует всего 2 2 n различных булевых функций от n переменных. Таким образом, имеется, например, 16 булевых функций от двух переменных, 256 — от трех и т. д.

Пример (голосование): Рассмотрим устройство, фиксирующее принятие некоторой резолюции «комитетом трех». Каждый член комитета при одобрении резолюции нажимает свою кнопку. Если большинство членов голосуют «за», то резолюция принимается. Это фиксируется регистрирующим прибором. Таким образом, устройство реализует функцию f(x,y,z), таблица истинности которой имеет вид:

x00001111
y00110011
z01010101
f(x,y,z)00001011

Булева функция также однозначно задается перечислением всех наборов, на которых она принимает значение 0, либо перечислением всех наборов, на которых она принимает значение 1.Полученную в примере функцию f можно также задать следующей системой равенств: f(0,0,0) = f(0,0,1) = f(0,1,0) = f(1,0,0) = 0.

Вектором значений булевой функции y=f(x1, x2 . xn) называется упорядоченный набор всех значений функции f, при котором значения упорядочены по лексикографическому порядку. Например, пусть функция трех переменных f задана вектором значений (0000 0010) и необходимо найти набор, на котором f принимает значение 1. Т.к. 1 стоит на 7 месте, а нумерация в лексикографическом порядке начинается с 0, то необходимо найти двоичное разложение 6. Таким образом, функция f принимает значение 1 на наборе (110).

Содержание
  1. Вектор значений для логической функции
  2. Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.
  3. Как пользоваться калькулятором
  4. Видеоинструкция к калькулятору
  5. Используемые символы
  6. Обозначения логических операций
  7. Что умеет калькулятор
  8. Что такое булева функция
  9. Что такое таблица истинности?
  10. Логические операции
  11. Таблица истинности логических операций
  12. Как задать логическую функцию
  13. Способы представления булевой функции
  14. Совершенная дизъюнктивная нормальная форма (ДНФ)
  15. Совершенная конъюнктивная нормальная форма (КНФ)
  16. Алгебраическая нормальная форма (АНФ, полином Жегалкина)
  17. Алгоритм построения СДНФ для булевой функции
  18. Алгоритм построения СКНФ для булевой функции
  19. Алгоритм построения полинома Жегалкина булевой функции
  20. Примеры построения различных представлений логических функций
  21. Построение совершенной дизъюнктивной нормальной формы:
  22. Построение совершенной конъюнктивной нормальной формы:
  23. Построение полинома Жегалкина:
  24. 🌟 Видео

Видео:Булевы функции и способы их заданияСкачать

Булевы функции и способы их задания

Вектор значений для логической функции

1) Задание булевой функции таблицей истинности. Так называется таблица, состоящая из двух частей: в левой части перечисляются все наборы значений аргументов (булевы векторы пространства B n ) в естественном порядке, то есть по возрастанию значений чисел, представляемых этими векторами, а в правой части – значения булевой функции на соответствующих наборах.

Вектор значений для логической функции

Пример. Рассмотрим булеву функцию трех аргументов, называемую мажоритарной (или функцией голосования): она принимает значение 1 на тех и только тех наборах, в которых единиц больше, чем нулей (major – больший).

Вектор значений для логической функции

Так как левая часть таблицы истинности постоянна для всех функций с одинаковым числом аргументов, несколько таких функций могут быть заданы общей таблицей.

Вектор значений для логической функции

Теорема о числе булевых функций. Число различных булевых функций, зависящих от n переменных, равно 2 2 n .

Доказательство. Каждая булева функция определяется своим столбцом значений. Столбец является булевым вектором длины m=2 n , где n – число аргументов функции. Число различных векторов длины m (а значит и число булевых функций, зависящих от n переменных) равно 2 m =2 2 n . •

2) Задание булевой функции характеристическими множествами. Так называются два множества:

M 1 f, состоящее из всех наборов, на которых функция принимает значение 1, то есть M 1 f = <α Вектор значений для логической функцииB n :f(α) = 1>;

M 0 f, состоящее из всех наборов, на которых функция принимает значение 0, то есть M 0 f = <α Вектор значений для логической функцииB n :f(α) = 0>.

Пример (мажоритарная функция).

3) Задание булевой функции вектором ее значений.

Пример (мажоритарная функция).

4) Задание булевой функции матрицей Грея. Булево пространство задается матрицей Грея, и наборы (клетки матрицы), на которых булева функция f(x1, …, xn) принимает значение 1, отмечаются и называются точками.

Пример (мажоритарная функция).

Вектор значений для логической функции

5) Интервальный способ задания булевой функции. Булеву функцию f(x1, …, xn) можно задать множеством интервалов If = <I1, I2, …, Ik>, объединение которых образует характеристическое множество M 1 f, то есть I1 Вектор значений для логической функцииI2Вектор значений для логической функцииВектор значений для логической функцииIk = M 1 f. Множество интервалов If называется достаточным для функции f(x1, …, xn).

Пример. Мажоритарная функция может быть задана достаточным множеством If = <I1, I2, I3> интервалов:

Вектор значений для логической функции

Здесь интервалы представлены троичными векторами и изображены на матрице Грея.

В отличие от предыдущих, интервальный способ задания функций многовариантен (одну и ту же булеву функцию можно представить разными множествами интервалов).

Пример. Зададим мажоритарную функцию другим достаточным множеством I’f = <I1, I2, I3, I4> интервалов:

Вектор значений для логической функции

Очевидно, что это множество интервалов избыточно: первый интервал (011) можно удалить.

Определение. Интервал назовем допустимым для булевой функции, если на всех его наборах функция равна 1.

Примеры. I1= – 1 1 – допустимый интервал для мажоритарной функции, I2= 1 0 – – не допустимый.

Вектор значений для логической функции

Определение. Интервал I назовем максимальным для булевой функции f(x1, …, xn), если он является допустимым для этой функции, и не существует другого допустимого интервала I’, такого что I Вектор значений для логической функцииI’.

Пример. I1= –11 является максимальным интервалом для мажоритарной функции, а допустимый интервал I2 = 111 не является максимальным, так как I2 Вектор значений для логической функцииI1.

Вектор значений для логической функции

Пример. Зададим мажоритарную функцию множеством I»f = <I1 I2, I3> всех максимальных интервалов.

Вектор значений для логической функции

Определение. Точку булевой функции f(x1, …, xn) назовем ядерной, если она принадлежит ровно одному максимальному для этой функции интервалу. Максимальный интервал называется ядерным, если он содержит ядерную точку.

Пример. Для мажоритарной функции ядерными точками являются 011 (принадлежит только интервалу –11), 101 (принадлежит только интервалу 1 –1) и 110 (принадлежит только интервалу 11 –). Все максимальные интервалы этой функции являются ядерными. •

Очевидно, что все ядерные интервалы входят в любое достаточное множество функции, состоящее из максимальных интервалов.

6) Задание булевой функции формулами будет рассмотрено несколько позже.

Видео:2 42 Ортогональность векторовСкачать

2 42 Ортогональность векторов

Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.

Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.

Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина

введите функцию или её вектор

Построено таблиц, форм:

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Как пользоваться калькулятором

  1. Введите в поле логическую функцию (например, x1 ∨ x2) или её вектор (например, 10110101)
  2. Укажите действия, которые необходимо выполнить с помощью переключателей
  3. Укажите, требуется ли вывод решения переключателем «С решением»
  4. Нажмите на кнопку «Построить»

Видео:A.2.15 Построение совершенных дизъюнктивной и конъюнктивной нормальных форм (СДНФ и СКНФ)Скачать

A.2.15 Построение совершенных дизъюнктивной и конъюнктивной нормальных форм (СДНФ и СКНФ)

Видеоинструкция к калькулятору

Используемые символы

В качестве переменных используются буквы латинского и русского алфавитов (большие и маленькие), а также цифры, написанные после буквы (индекс переменной). Таким образом, именами переменных будут: a , x , a1 , B , X , X1 , Y1 , A123 и так далее.

Для записи логических операций можно использовать как обычные символы клавиатуры ( * , + , ! , ^ , -> , = ), так и символы, устоявшиеся в литературе ( ∧ , ∨ , ¬ , ⊕ , → , ≡ ). Если на вашей клавиатуре отсутствует нужный символ операции, то используйте клавиатуру калькулятора (если она не видна, нажмите «Показать клавиатуру»), в которой доступны как все логические операции, так и набор наиболее часто используемых переменных.

Для смены порядка выполнения операций используются круглые скобки ().

Обозначения логических операций

  • И (AND): & • ∧ *
  • ИЛИ (OR): ∨ +
  • НЕ (NOT): ¬ !
  • Исключающее ИЛИ (XOR): ⊕ ^
  • Импликация: -> → =>
  • Эквивалентность: =

Что умеет калькулятор

  • Строить таблицу истинности по функции
  • Строить таблицу истинности по двоичному вектору
  • Строить совершенную конъюнктивную нормальную форму (СКНФ)
  • Строить совершенную дизъюнктивную нормальную форму (СДНФ)
  • Строить полином Жегалкина (методами Паскаля, треугольника, неопределённых коэффициентов)
  • Определять принадлежность функции к каждому из пяти классов Поста
  • Строить карту Карно
  • Минимизировать ДНФ и КНФ
  • Искать фиктивные переменные

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Что такое булева функция

Булева функция f(x1, x2, . xn) — это любая функция от n переменных x1, x2, . xn, в которой её аргументы принимают одно из двух значений: либо 0, либо 1, и сама функция принимает значения 0 или 1. То есть это правило, по которому произвольному набору нулей и единиц ставится в соответствие значение 0 или 1. Подробнее про булевы функции можно посмотреть на Википедии.

Видео:Математика это не ИсламСкачать

Математика это не Ислам

Что такое таблица истинности?

Таблица истинности — это таблица, описывающая логическую функцию, а именно отражающую все значения функции при всех возможных значениях её аргументов. Таблица состоит из n+1 столбцов и 2 n строк, где n — число используемых переменных. В первых n столбцах записываются всевозможные значения аргументов (переменных) функции, а в n+1-ом столбце записываются значения функции, которые она принимает на данном наборе аргументов.

Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.

Видео:Алгебра логики: Логические переменные и логические функции. Центр онлайн-обучения «Фоксфорд»Скачать

Алгебра логики: Логические переменные и логические функции. Центр онлайн-обучения «Фоксфорд»

Логические операции

Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).

Таблица истинности логических операций

aba ∧ ba ∨ b¬a¬ba → ba = ba ⊕ b
000011110
010110101
100101001
111100110

Видео:Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

Как задать логическую функцию

Есть множество способов задать булеву функцию:

  • таблица истинности
  • характеристические множества
  • вектор значений
  • матрица Грея
  • формулы

Рассмотрим некоторые из них:

Чтобы задать функцию через вектор значений необходимо записать вектор из 2 n нулей и единиц, где n — число аргументов, от которых зависит функция. Например, функцию двух аргументов можно задать так: 0001 (операция И), 0111 (операция ИЛИ).

Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c

Видео:Дискретная математика. ДНФСкачать

Дискретная математика. ДНФ

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

  • Совершенная дизъюнктивная нормальная форма (СДНФ)
  • Совершенная конъюнктивная нормальная форма (СКНФ)
  • Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬a bc ∨ ¬a ¬b c ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 1
  3. Выписать простые конъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 0, то она входит в конъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые конъюнкции с помощью дизъюнкции

Алгоритм построения СКНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 0
  3. Выписать простые дизъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 1, то она входит в дизъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые дизъюнкции с помощью конъюнкции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

  1. Построить таблицу истинности для функции
  2. Добавить новый столбец к таблице истинности и записать в 1, 3, 5. ячейки значения из тех же строк предыдущего столбца таблицы истинности, а к значениям в строках 2, 4, 6. прибавить по модулю два значения из соответственно 1, 3, 5. строк.
  3. Добавить новый столбец к таблице истинности и переписать в новый столбец значения 1, 2, 5, 6, 9, 10. строк, а к 3, 4, 7, 8, 11, 12. строкам аналогично предыдущему пункту прибавить переписанные значения.
  4. Повторить действия каждый раз увеличивая в два раза количество переносимых и складываемых элементов до тех пор, пока длина не станет равна числу строк таблицы.
  5. Выписать булевы наборы, на которых значение последнего столбца равно единице
  6. Записать вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора записать единицу) и объединить их с помощью операции исключающего ИЛИ.

Видео:Не пропустите открытие тысячелетия! // Vital MathСкачать

Не пропустите открытие тысячелетия! // Vital Math

Примеры построения различных представлений логических функций

Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬a b∨ ¬b c∨ca

1. Построим таблицу истинности для функции

abc¬a¬a ∧b¬b¬b ∧c¬a ∧b∨ ¬b ∧cc∧a¬a ∧b∨ ¬b ∧c∨c∧a
0001010000
0011011101
0101100101
0111100101
1000010000
1010011111
1100000000
1110000011

Построение совершенной дизъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает истинное значение:

В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:

Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:

Построение совершенной конъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает ложное значение:

В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:

Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:

Построение полинома Жегалкина:

Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:

abcF1
00000
0011⊕ 01
01011
0111⊕ 10
10000
1011⊕ 01
11000
1111⊕ 01

Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:

abcF12
000000
001111
01011⊕ 01
01110⊕ 11
100000
101111
11000⊕ 00
11111⊕ 10

Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:

abcF123
0000000
0011111
0101111
0111011
100000⊕ 00
101111⊕ 10
110000⊕ 11
111110⊕ 11

Окончательно получим такую таблицу:

abcF123
0000000
0011111
0101111
0111011
1000000
1011110
1100001
1111101

Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):

Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc

Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.

🌟 Видео

Булевы функцииСкачать

Булевы функции

Многочлен полином Жегалкина Метод неопределенных коэффициентовСкачать

Многочлен полином Жегалкина  Метод неопределенных коэффициентов

Булевы функции. Функции алгебры логики. Что это?Скачать

Булевы функции. Функции алгебры логики. Что это?

Для булевой функции, заданной вектором значений, определитьСкачать

Для булевой функции, заданной вектором значений, определить

7 4 Собственные векторы и собственные значенияСкачать

7 4  Собственные векторы и собственные значения

Матан за час. Шпаргалка для первокурсника. Высшая математикаСкачать

Матан за час. Шпаргалка для первокурсника. Высшая математика

Коллинеарность векторовСкачать

Коллинеарность векторов

Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

Самый короткий тест на интеллект Задача Массачусетского профессора

Зачем нужен ВЕКТОР. Объяснение смыслаСкачать

Зачем нужен ВЕКТОР. Объяснение смысла

А.7.35 Собственные вектора и собственные значения матрицыСкачать

А.7.35 Собственные вектора и собственные значения матрицы
Поделиться или сохранить к себе: