Вектор тока через индуктивность

Вектор тока через индуктивность

Закон Ома и вытекающие из него правила Кирхгофа были установлены для постоянных токов. Однако эти законы остаются справедливыми и для мгновенных значений изменяющихся во времени тока или напряжения, если их изменения происходят не слишком быстро. Электромагнитные возмущения распространяются по цепи со скоростью света с. Если за время τ = l/c, которое необходимо для передачи возмущения в самую отдаленную точку цепи l, сила тока изменяется незначительно, то мгновенные значения тока в начале и конце цепи будут практически одинаковыми. Токи, удовлетворяющие такому условию, называются квазистационарными. Для них справедливо неравенство:

где Т – период изменения тока.

При размерах цепи l

3 м τ = 10 -8 с. Таким образом, вплоть до периодов Т

10 -6 с, что соответствует частоте 10 6 Гц, токи в такой цепи можно считать квазистационарными. Ток промышленной частоты 50 Гц будет квазистационарным для цепей длиной l

Рис.3.9.1. Представление переменных токов с помощью векторных диаграмм

Мгновенные значения квазистационарного тока подчиняются закону Ома, и для него справедливы правила Кирхгофа. Пусть к зажимам сопротивления R (Рис.3.9.1), не обладающего индуктивностью или емкостью (такое сопротивление называется активным), приложено напряжение, изменяющееся со временем по закону:

U = U m cosωt,(3.9.2)

где U m – амплитудное значение напряжения. При выполнении условия квазистационарности ток через сопротивление определяется законом Ома:

Здесь введено обозначение амплитудного значения тока:

Удобно при описании переменных токов использовать векторные диаграммы. Выберем произвольное направление, которое назовем осью токов. Отложим вдоль этого направления вектор тока длиной I m. Поскольку напряжение и ток в данном случае изменяются во времени синхронно, вектор напряжения также будет направлен вдоль оси токов. Его длина равна RI m .

Содержание
  1. 3.9.2. Переменный ток, текущий через индуктивность
  2. 3.9.3. Переменный ток, текущий через емкость
  3. 3.9.4. Переменный ток, текущий через цепь с емкостью, индуктивностью и активным сопротивлением
  4. 3.9.5. Мощность, выделяемая в цепи переменного тока
  5. 3.9.6. Свободные колебания тока в электромагнитном контуре без потерь
  6. 3.9.7 Электромагнитные волны
  7. №20 Самоиндукция. Индуктивность. Синусоидальный ток в индуктивности.
  8. Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме
  9. История развития и опыты Фарадея
  10. Закон Фарадея
  11. Основные понятия и законы электростатики
  12. Электроёмкость. Конденсаторы. Энергия электрического поля
  13. Основные понятия и законы постоянного тока
  14. Основные понятия и законы магнитостатики
  15. Основные понятия и законы электромагнитной индукции
  16. Электромагнитные колебания и волны
  17. Закон Фарадея-Максвелла
  18. Что мы узнали?
  19. Явление электромагнитной индукции
  20. Самоиндукция
  21. Индуктивность
  22. Энергия магнитного поля
  23. Основные формулы раздела «Электромагнитная индукция»
  24. Правило Ленца
  25. Задачи на применение закона Фарадея
  26. 🔥 Видео

3.9.2. Переменный ток, текущий через индуктивность

Рис.3.9.2. Переменный ток, текущий через индуктивность

Подадим переменное напряжение на концы индуктивности L с пренебрежимо малыми сопротивлением и емкостью (Рис.3.9.2). Через индуктивность будет течь переменный ток, вследствие чего возникнет ЭДС самоиндукции:

Используя второе правило Кирхгофа, можем записать:

В данном случае все напряжение приложено к индуктивности. Следовательно, величина

и есть падение переменного напряжения на индуктивности.

Перепишем уравнение (3.9.6) в виде:

Интегрируя (3.9.8), получим:

Постоянный ток в данном примере отсутствует, поэтому const = 0. Следовательно, имеем:

Из сопоставления (3.9.11) и (3.9.4) следует, что роль сопротивления в цепи с индуктивностью играет величина:

X L = ωL,(3.9.12)

которую называют реактивным индуктивным сопротивлением.

Как видно из (3.9.12), величина индуктивного сопротивления растет при увеличении частоты тока. Постоянному току индуктивность сопротивления не оказывает.

Используя (3.9.6) и (3.9.11), падению напряжения на индуктивности можно придать вид:

Из сравнения (3.9.13) и (3.9.10) следует, что между током и напряжением в цепи с индуктивностью существует сдвиг фаз на 90 0 , причем ток отстает по фазе от напряжения. На векторной диаграмме это обстоятельство можно отразить как на Рис.3.9.2б.

3.9.3. Переменный ток, текущий через емкость

Рис.3.9.3. Ток и напряжение в цепи с емкостью

Пусть переменное напряжение подано на емкость С (Рис.3.9.3) Индуктивностью и сопротивлением подводящих проводов пренебрегаем. Емкость непрерывно перезаряжается, благодаря чему через нее протекает переменный ток. Напряжение на конденсаторе можно считать равным внешнему напряжению:

Умножая (3.9.14) на С и дифференцируя по времени, получим ток:

Величина Х С в цепи с емкостью играет роль сопротивления и называется реактивным емкостным сопротивлением.

Для постоянного тока Х С = ±, так как постоянный ток течь через конденсатор не может. Переменный ток через конденсатор проходит, причем сопротивление току тем меньше, чем больше частота.

Заменив в соотношении (3.9.14) амплитуду напряжения, используя (3.9.16), имеем:

Сравнив (3.9.17) и (3.9.15), можно сделать вывод, что между током и напряжением в цепи с емкостью существует сдвиг фаз на 90 0 , причем ток опережает по фазе напряжение. На векторной диаграмме это обстоятельство можно отразить как на Рис. 3.9.3б.

3.9.4. Переменный ток, текущий через цепь с емкостью, индуктивностью и активным сопротивлением

Рис.3.9. 4. Цепь с индуктивностью, емкостью и активным сопротивлением

Рассмотрим цепь, включающую в себя активное сопротивление, индуктивность и емкость (Рис.3.9.4). Подадим на эту цепь переменное напряжение с частотой ω . В цепи возникнет переменный ток с той же частотой. Он вызовет падение напряжения на активном сопротивлении U R . Фаза этого напряжения совпадает с фазой тока, поэтому вектор напряжения откладывают вдоль оси токов. Падение напряжения на индуктивности U L опережает ток по фазе на 90 0 , поэтому вектор, изображающий U L , должен быть повернут относительно оси токов на 90 0 против часовой стрелки. Наконец, падение напряжения на емкости U С отстает по фазе от тока на 90 0 и должно быть изображено вектором U С , повернутым относительно оси токов на 90 0 по часовой стрелки.

Сложив векторы, изображающие U L , U R и U С , получим вектор, изображающий приложенное напряжение U. Его длина равна U m . Этот вектор образует с осью токов угол φ, тангенс которого можно вычислить из Рис.3.9.4:

Угол φ дает разность фаз между напряжением U и силой тока i. Из Рис.3.9.4 следует также, что:

Итак, если напряжение на зажимах цепи изменяется по закону:

то в такой цепи будет течь ток:

называется полным сопротивлением цепи. При этом величина

носит наименование реактивного сопротивления . Поэтому формулу (3.9.23) можно представить в виде:

Ток отстает от напряжения (φ > 0) или опережает его (φ L и Х С .

Если , то φ > 0, и ток отстает от напряжения по фазе;

  • Если , то φ

  • , то φ = 0, и ток и напряжение изменяются синфазно.

    Для выполнения 3 условия необходимо, чтобы частота имела значение:

    Если частота внешнего напряжения имеет значение (3.9.25), полное сопротивление цепи имеет наименьшее значение, равное:

    Z = R.(3.9.26)

    Соответственно, сила тока будет иметь наибольшее значение. При этом падение напряжения на активном сопротивлении равно внешнему напряжению, приложенному к цепи:

    U = U R .(3.9.27)

    Падения напряжения на индуктивности и емкости равны по амплитуде и противоположны по фазе. Это явление называется резонансом напряжений , а частота (3.9.25) – резонансной.

    При ω = ω рез имеем для амплитуд напряжений на индуктивности и емкости :

    Если , то падения напряжения на индуктивности и емкости будут превышать напряжение, приложенное к цепи.

    Если емкость в цепи отсутствует, приложенное напряжение равно сумме напряжений на сопротивлении и индуктивности (Рис. 3.9.5):

    U = U R + U L .(3.9.29)

    Тогда из Рис. 3.9.5 следует, что:

    Эти формулы совпадут с выражениями (3.9.18) и (3.9.20) соответственно, если в последних положить , т.е. С = ± . Таким образом, отсутствие емкости в цепи означает именно условие С = ± . Действительно, постепенный переход от цепи, содержащей емкость, к цепи без емкости можно представить себе как сближение обкладок конденсатора вплоть до их полного соприкосновения. Но в этом случае расстояние между ними уменьшается, а емкость возрастает.

    3.9.5. Мощность, выделяемая в цепи переменного тока

    Рис.3.9.5. Векторная диаграмма для цепи с индуктивностью и сопротивлением

    Мгновенное значение мощности, выделяемой в цепи, равно произведению мгновенных значений напряжения и силы тока:

    P(t) = U(t)I(t) = U m cosωt·I m cos(ωt-φ).(3.9.31)

    соотношению (3.9.31) можно придать вид:

    Практический интерес представляет среднее по времени значение Р(t), которое обозначим через Р. Так как среднее значение cos(2ωt-φ ) = 0, то выполняется:

    Средняя мощность выделяется в активном сопротивлении в виде тепла. Используя векторную диаграмму Рис. 3.9.4, можно получить:

    Подставляя (3.9.34) в (3.9.33) и учитывая, что , получаем:

    Такую же мощность развивает постоянный ток, для которого сила тока равна величине:

    Величина (3.9.36) называется действующим , или эффективным , значением силы тока. Аналогично для напряжения имеем действующее значение:

    Используя (3.9.36) и (3.9.37), формулу (3.9.33) можно представить в виде:

    Входящий в (3.9.38) множитель cosφ называют коэффициентом мощности . Если реактивное сопротивление Х = 0, то, согласно (3.9.34), cosφ = 1, и P = UI (выделяется максимальная мощность). При чисто реактивном сопротивлении цепи R = 0 и cosφ = 0, поэтому средняя мощность также равна нулю. В данном случае невозможно получить выделяемую мощность, отличную от нуля. В электротехнике для сокращения потерь поэтому стремятся сделать значение cosφ как можно больше.

    3.9.6. Свободные колебания тока в электромагнитном контуре без потерь

    В цепи, содержащей параллельно соединенные индуктивность и емкость, возникают электрические колебания. Такая цепь называется колебательным контуром (Рис.3.9.6).

    Рис.3.9.6. Электромагнитные колебания в колебательном контуре

    Для того, чтобы вызвать колебания, можно присоединить отключенный от индуктивности конденсатор к источнику тока, вследствие чего на обкладках возникнут разноименные заряды величиной q m (стадия 1). Между обкладками возникнет электрическое поле, энергия которого равна . Если затем отключить источник тока и замкнуть конденсатор на индуктивность, емкость начнет разряжаться, и в контуре потечет ток. В результате энергия электрического поля начнет уменьшаться, но зато возникнет все возрастающая энергия магнитного поля, обусловленная током, текущим через индуктивность. Эта энергия равна величине .

    Так как считается, что активное сопротивление равно нулю, полная энергия не расходуется на нагревание и будет оставаться постоянной. Поэтому в момент, когда напряжение на конденсаторе и энергия электрического поля в нем равны нулю, энергия магнитного поля и величина тока достигают максимального значения (стадия 2).

    В дальнейшем ток уменьшается и, когда заряды на обкладках конденсатора достигнут первоначальной величины, сила тока становится равной нулю (стадия 3). Отметим, что знаки зарядов на обкладках конденсатора противоположны тем, что были на начальном уровне.

    Затем те же процессы протекают в обратном порядке (стадии 4 и 5), и весь цикл повторяется снова и снова. В ходе описанного процесса периодически изменяются (колеблются) заряд на обкладках, напряжение на конденсаторе, сила тока, текущего через индуктивность.

    Колебаниям в контуре можно сопоставить колебания пружинного маятника.

    Из сопоставления электрических и механических колебаний следует, что энергия электрического поля аналогична потенциальной энергии упругой деформации, а энергия магнитного поля аналогична кинетической энергии. Индуктивность L играет роль массы m, величина, обратная емкости С -1 , — роль коэффициента жесткости k. Наконец, заряду q соответствует смещение маятника х, а силе тока — скорость.

    Во время колебаний внешнее напряжение к контуру не приложено. Поэтому падения напряжения на емкости и на индуктивности в сумме должны дать нуль:

    Разделив (3.9.39) на величину L и используя выражение для тока , получим:

    Если ввести обозначение:

    то уравнение (3.9.40) принимает вид:

    Это дифференциальное уравнение 2 порядка, известное как уравнение колебаний. Его решением является функция:

    Следовательно, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой, определяемой формулой (10.41). Это – собственная частота контура. Для периода колебаний из (10.41) можно получить формулу Томсона :

    3.9.7 Электромагнитные волны

    В процессах преобразования электрической энергии в энергию магнитного поля и обратно, происходящих в электромагнитном контуре, возникают электромагнитные колебания, обусловленные неразрывной связью между переменным магнитным и переменным электрическим полями. Максвелл теоретически вычислил, что такие электромагнитные колебания могут распространяться в свободном пространстве со скоростью света, приобретая при этом свойства электромагнитных волн (Рис.3.9.7).

    Рис.3.9.7. Структура электромагнитной волны

    Как видно из рисунка, векторы электрического и магнитного полей образуют с направлением распространения правовинтовую систему. В фиксированной точке пространства эти векторы изменяются со временем по гармоническому закону. Поскольку волна должна распространяться в пространстве, векторы электрического и магнитного полей должны зависеть от координаты:

    Это – уравнения плоской электромагнитной волны, где

    модуль волнового вектора, совпадающего с направлением распространения электромагнитной волны, ω и λ — циклическая частота и длина волны,

    скорость электромагнитной волны, совпадающая со скоростью света.

    Экспериментальное подтверждение теории Максвелла было сделано Г.Герцем в 1888г. Для получения волн Герц использовал изобретенный им вибратор. В колебательном контуре электрическое поле сосредоточено между обкладками конденсатора, а магнитное – внутри катушки. В окружающее пространство эти поля попасть не могут. Чтобы появилось излучение, нужно модифицировать колебательный контур, сделать его открытым. Этого можно достигнуть, увеличивая расстояние между пластинами конденсатора и между витками катушки (Рис.3.9.8). В пределе можно прийти к вибратору Герца – устройству, которое будет излучать электромагнитные волны, если через вибратор пропускать переменный электрический ток.

    Рис.3.9.8. Открытый колебательный контур

    © ФГОУ ВПО Красноярский государственный аграрный университет, 2015

    Видео:Урок 359. Конденсатор и катушка индуктивности в цепи переменного тока.Скачать

    Урок 359. Конденсатор и катушка индуктивности в цепи переменного тока.

    №20 Самоиндукция. Индуктивность. Синусоидальный ток в индуктивности.

    Если в катушке, изображенной на рис. 20.1, магнитное поле создается собственным током i, то магнитный поток называется потоком самоиндукции и обозначается ФL, а индуцируемая в катушке ЭДС еL – ЭДС самоиндукции. В соответствии с формулой (20.1) она равна:

    Вектор тока через индуктивность

    где ψ – потокосцепление самоиндукции, величина, пропорциональная протекающему по катушке току: ψ = Li.

    Коэффициент пропорциональности L между потокосцеплением и током называется собственной индуктивностью или просто индуктивностью катушки (контура). Она зависит от формы и размеров катушки, а также от магнитной проницаемости сердечника. Ее размерность В x с/А=Ом x с. Эта единица измерения называется генри (Гн).

    Подставляя последнее выражение в (2.15) и полагая L = const, получаем следующую формулу, определяющую ЭДС самоиндукции:

    Вектор тока через индуктивность

    На рис. 2.18 показано изображение индуктивности на электрической схеме; uL – напряжение на зажимах катушки, обусловленное электродвижущей силой самоиндукции, или другими словами, напряжение, наведенное в катушке собственным переменным магнитным полем.

    Вектор тока через индуктивность

    Рис. 2.18 — Обозначение индуктивности

    Все три стрелки на схеме (i, eL, uL) принято направлять в одну сторону. Раньше мы видели, что при одинаковых направлениях стрелок напряжения и ЭДС они имеют разные знаки. Поэтому:

    Вектор тока через индуктивность

    Знак минус в правой части формулы (2.16) обусловлен принципом Ленца, определяющим направление индуцированной ЭДС. В рассматриваемом случае он может быть сформулирован следующим образом:

    ЭДС самоиндукции направлена так, что своим действием препятствует причине, вызвавшей ее появление.

    Причина появления ЭДС самоиндукции – изменение тока. Поэтому при возрастании тока она направлена ему навстречу, при уменьшении тока – в одну с ним сторону.

    Препятствуя изменению тока, ЭДС самоиндукции оказывает ему сопротивление, которое называется индуктивным и обозначается хL. В соответствии с формулой (2.16) его величина определяется индуктивностью и скоростью изменения тока, т.е. частотой. Формула, определяющая индуктивное сопротивление, имеет вид:

    Вектор тока через индуктивность

    В цепях постоянного тока такого понятия мы не встречали, так как при постоянных магнитных полях ЭДС самоиндукции не возникает. Пусть ток, протекающий по индуктивности, определяется выражением (2.13). Тогда напряжение на ее зажимах, в соответствии с формулой (2.17), равно:

    Вектор тока через индуктивность

    Это – мгновенное значение напряжения. Его амплитуда равна:

    Вектор тока через индуктивность

    Аналогичное выражение получается (после деления на √2) и для действующих значений:

    Вектор тока через индуктивность

    Вектор тока через индуктивность

    где Bl — индуктивная проводимость.

    Вектор тока через индуктивность

    Запишем соответствующие формулы в символической форме:

    Вектор тока через индуктивность

    Вектор тока через индуктивность

    Вектор тока через индуктивность

    Вектор тока через индуктивность

    Аналогично для действующих значений

    Вектор тока через индуктивность

    Уравнения, связывающие напряжение и ток в индуктивности, как в вещественных, так и в комплексных числах, представляют собой закон Ома для индуктивности.

    Начальная фаза напряжения больше начальной фазы тока на 90° . В индуктивности ток отстает от напряжения на четверть периода. Выражение закона Ома, записанное в символическое форме, указывает на этот сдвиг фаз. Вспомним, что умножение вектора на j приводит к его повороту на угол 90° против часовой стрелки.

    Вектор тока через индуктивность

    Рис. 2.19 — Векторная диаграмма напряжения и тока в индуктивности

    Согласно уравнениям (2.18) UL получается путем умножения произведения IxL на j, в результате чего вектор UL оказывается повернутым относительно вектора I.

    Пример 2.5. Мгновенное значение напряжения на индуктивности определяется выражением uL = 200 sin(ωt+60°)В. Записать выражение мгновенного значения тока, если L = 63,67 мГн, а частота питающего напряжения f = 50 Гц. Построить векторные диаграммы напряжения и тока.

    Решение. При частоте f = 50 Гц циклическая частота ω = 314 с-1, и индуктивное сопротивление xL = ωL = 20 Ом. Амплитуда тока равна:

    Вектор тока через индуктивность

    Так как в индуктивности ток отстает от напряжения на четверть периода, его начальная фаза меньше начальной фазы напряжения на 90° : ψi = ψu – 90° = 60–90–30°.

    Итак, i = 10sin (ωt–30°). Векторная диаграмма показана на рис. 2.20.

    Видео:Урок 287. Индуктивность контура (катушки). Явление самоиндукцииСкачать

    Урок 287. Индуктивность контура (катушки). Явление самоиндукции

    Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме

    Видео:Построение векторных диаграмм/Треугольник токов, напряжений и мощностей/Коэффициент мощностиСкачать

    Построение векторных диаграмм/Треугольник токов, напряжений и мощностей/Коэффициент мощности

    История развития и опыты Фарадея

    До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств. Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

    Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

    Вектор тока через индуктивность

    Рис. 1. Схема опыта Фарадея

    На самом деле, одновременно с Фарадеем, но независимо от него, другой ученый Джозеф Генри обнаружил это явление. Однако Фарадей опубликовал свои исследования раньше. Таким образом, автором закона электромагнитной индукции стал Майкл Фарадей.

    Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

    Видео:Векторные диаграммы и коэффициент мощностиСкачать

    Векторные диаграммы и коэффициент мощности

    Закон Фарадея

    Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

    Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

    Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

    Вектор тока через индуктивность

    Рис. 2. Формула закона электромагнитной индукции

    И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

    Основные понятия и законы электростатики

    Закон Кулона:
    сила взаимодействия двух точечных неподвижных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними:
    Вектор тока через индуктивность

    Коэффициент пропорциональности в этом законе
    Вектор тока через индуктивность

    В СИ коэффициент k записывается в виде
    Вектор тока через индуктивность
    где ε0 = 8, 85 · 10−12 Ф/м (электрическая постоянная).
    Точечными зарядами называют такие заряды, расстояния между которыми гораздо больше их размеров.
    Электрические заряды взаимодействуют между собой с помощью электрического поля. Для качественного описания электрического поля используется силовая характеристика, которая называется «напряжённостью электрического поля» (E). Напряжённость электрического поля равна отношению силы, действующей на пробный заряд, помещённый в некоторую точку поля, к величине этого заряда:
    Вектор тока через индуктивность
    Направление вектора напряжённости совпадает с направлением силы, действующей на положительный пробный заряд. [E]=B/м. Из закона Кулона и определения напряжённости поля следует, что напряжённость поля точечного заряда
    Вектор тока через индуктивность
    где q — заряд, создающий поле; r — расстояние от точки, где находится заряд, до точки, где создаётся поле.
    Если электрическое поле создаётся не одним, а несколькими зарядами, то для нахождения напряжённости результирующего поля используется принцип суперпозиции электрических полей: напряжённость результирующего поля равна векторной сумме напряжённостей полей, созданных каждым из зарядов — источников в отдельности:
    Вектор тока через индуктивность
    Работа электрического поля при перемещении заряда: найдём работу перемещения положительного заряда силами Кулона в однородном электрическом поле. Пусть поле перемещает заряд q из точки 1 в точку 2:
    Вектор тока через индуктивность
    В электрическом поле работа не зависит от формы траектории, по которой перемещается заряд. Из механики известно, что если работа не зависит от формы траектории, то она равна изменению потенциальной энергии с противоположным знаком:
    Вектор тока через индуктивность
    Отсюда следует, что
    Вектор тока через индуктивность

    Потенциалом электрического поля называют отношение потенциальной энергии заряда в поле к этому заряду:
    Вектор тока через индуктивность
    Запишем работу поля в виде
    Вектор тока через индуктивность
    Здесь U = ϕ1 − ϕ2 — разность потенциалов в начальной и конечной точках траектории. Разность потенциалов называют также напряжением
    Часто наряду с понятием «разность потенциалов» вводят понятие «потенциал некоторой точки поля». Под потенциалом точки подразумевают разность потенциалов между данной точкой и некоторой заранее выбранной точкой поля. Эту точку можно выбирать в бесконечности, тогда говорят о потенциале относительной бесконечности.
    Потенциал поля точечного заряда подсчитывается по формуле
    Вектор тока через индуктивность

    Проекция напряжённости электрического поля на какую-нибудь ось и потенциал связаны соотношением
    Вектор тока через индуктивность

    Электроёмкость. Конденсаторы. Энергия электрического поля

    Электроёмкостью тела называют величину отношения
    Вектор тока через индуктивность
    Формула для подсчёта ёмкости плоского конденсатора имеет вид:
    Вектор тока через индуктивность
    где S — площадь обкладок, d — расстояние между ними.
    Конденсаторы можно соединять в батареи. При параллельном соединении ёмкость батареи C равна сумме ёмкостей конденсаторов:
    Вектор тока через индуктивность
    Разности потенциалов между обкладками одинаковы, а заряды прямо пропорциональны ёмкостям.
    При последовательном соединении величина, обратная ёмкости батареи, равна сумме обратных ёмкостей, входящих в батарею:
    Вектор тока через индуктивность
    Заряды на конденсаторах одинаковы, а разности потенциалов обратно пропорциональны ёмкостям.
    Заряженный конденсатор обладает энергией. Энергию заряженного конденсатора можно подсчитать по любой из следующих формул:
    Вектор тока через индуктивность

    Основные понятия и законы постоянного тока

    Электрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:
    Вектор тока через индуктивность

    Закон Ома для участка цепи имеет вид:
    Вектор тока через индуктивность
    Коэффициент пропорциональности R, называемый электрическим сопротивлением, является характеристикой проводника [R]=Ом. Сопротивление проводника зависит от его геометрии и свойств материала:
    Вектор тока через индуктивность
    где l — длина проводника, ρ — удельное сопротивление, S — площадь поперечного сечения. ρ является характеристикой материала и его состояния. [ρ] = Ом·м.
    Проводники можно соединять последовательно. Сопротивление такого соединения находится как сумма сопротивлений:
    Вектор тока через индуктивность

    При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:
    Вектор тока через индуктивность
    Для того чтобы в цепи длительное время протекал электрический ток, в составе цепи должны содержаться источники тока. Количественно источники тока характеризуют их электродвижущей силой (ЭДС). Это отношение работы, которую совершают сторонние силы при переносе электрических зарядов по замкнутой цепи, к величине перенесённого заряда:
    Вектор тока через индуктивность
    Если к зажимам источника тока подключить нагрузочное сопротивление R, то в получившейся замкнутой цепи потечёт ток, силу которого можно подсчитать по формуле
    Вектор тока через индуктивность
    Это соотношение называют законом Ома для полной цепи.
    Электрический ток, пробегая по проводникам, нагревает их, совершая при этом работу
    Вектор тока через индуктивность

    где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.
    Закон Джоуля-Ленца:
    Вектор тока через индуктивность

    Основные понятия и законы магнитостатики

    Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, то следует определить и направление этого вектора, и его модуль. Направление вектора магнитной индукции связано с ориентирующим действием магнитного поля на магнитную стрелку. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.
    Направление вектора магнитной индукции прямолинейного проводника с токам можно определить с помощью правила буравчика:
    если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением вектора магнитной индукции.
    Модулем вектора магнитной индукции назовём отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током , к произведению силы тока на длину этого участка:
    Вектор тока через индуктивность
    Единица магнитной индукции называется тесла (1 Тл)
    Магнитным потоком Φ через поверхность контура площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь этой поверхности и на косинус угла между вектором магнитной индукции ➛B и нормалью к поверхности ➛n:
    Вектор тока через индуктивность
    Единицей магнитного потока является вебер (1 Вб).
    На проводник с током, помещённый в магнитное поле, действует сила Ампера
    Закон Ампера:
    на отрезок проводника с током силой I и длиной l, помещённый в однородное магнитное поле с индукцией ➛B , действует сила, модуль которой равен произведению модуля вектора магнитной индукции на силу тока, на длину участка проводника, находящегося в магнитном поле, и на синус угла между направлением вектора ➛B и проводником с током:
    Вектор тока через индуктивность
    Направление силы Ампера определяется с помощью правила левой руки:
    если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца указывали бы направление тока, то отогнутый на 90° большой палец укажет направление силы Ампера.
    На электрический заряд, движущийся в магнитном поле, действует сила Лоренца. Модуль силы Лоренца, действующей на положительный заряд, равен произведению модуля заряда на модуль вектора магнитной индукции и на синус угла между вектором магнитной индукции и вектором скорости движущегося заряда:
    Вектор тока через индуктивность
    Направление силы Лоренца определяется с помощью правила левой руки: если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда, то отогнутый на 90° большой палец покажет направление силы Лоренца, действующей на заряд. Для отрицательно заряженной частицы сила Лоренца направлена против направления большого пальца.

    Основные понятия и законы электромагнитной индукции

    Если замкнутый проводящий контур пронизывается меняющимся магнитным потоком, то в этом контуре возникает ЭДС и электрический ток. Эту ЭДС называют ЭДС электромагнитной индукции, а ток — индукционным. Явление их возникновения называют электромагнитной индукцией. ЭДС индукции можно подсчитать по основному закону электромагнитной индукции или по закону Фарадея:
    Вектор тока через индуктивность
    Знак «−» связан с направлением индукционного тока. Оно определяется по правилу Ленца:
    индукционный ток имеет такое направление, что его действие противодействует причине, вызвавшей появление этого тока.
    Магнитный поток, пронизывающий контур, прямо пропорционален току, протекающему в этом контуре:
    Вектор тока через индуктивность
    Коэффициент пропорциональности L зависит от геометрии контура и называется индуктивностью, или коэффициентом самоиндукции этого контура. [L] = 1 Гн
    Энергию магнитного поля тока можно подсчитать по формуле
    Вектор тока через индуктивность
    где L — индуктивность проводника, создающего поле; I — ток, текущий по этому проводнику

    Электромагнитные колебания и волны

    Колебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью C и катушки с индуктивностью L (см. рис. 7).
    Вектор тока через индуктивность

    Для свободных незатухающих колебаний в контуре циклическая частота определяется формулой
    Вектор тока через индуктивность

    Период свободных колебаний в контуре определяется формулой Томсона:
    Вектор тока через индуктивность
    Если в LC-контур последовательно с L, C и R включить источник переменного напряжения, то в цепи возникнут вынужденные электрические колебания. Такие колебания принято называть переменным электрическим током
    В цепь переменного тока можно включать три вида нагрузки — конденсатор, резистор и катушку индуктивности.
    Вектор тока через индуктивность
    Конденсатор оказывает переменному току сопротивление, которое можно посчитать по формуле
    Вектор тока через индуктивность
    Ток, текущий через конденсатор, по фазе опережает напряжение на π/2 или на четверть периода, а напряжение отстаёт от тока на такой же фазовый угол.
    Вектор тока через индуктивность
    Катушка индуктивности оказывает переменному току сопротивление, которое можно посчитать по формуле
    Вектор тока через индуктивность

    Ток, текущий через катушку индуктивности, по фазе отстаёт от напряжения на π/2 или на четверть периода. Напряжение опережает ток на такой же фазовый угол.
    Вектор тока через индуктивность

    Трансформатором называется устройство, предназначенное для преобразования переменных токов. Трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке и вторичной обмотке трансформатора равно отношению числа витков в этих обмотках:
    Вектор тока через индуктивность
    Если K > 1, трансформатор понижающий, если K Вектор тока через индуктивность
    Вектор тока через индуктивность
    Вектор тока через индуктивность
    Вектор тока через индуктивность
    Вектор тока через индуктивность
    Вектор тока через индуктивность
    Вектор тока через индуктивность
    Вектор тока через индуктивность
    Вектор тока через индуктивность

    Видео:Урок 28. КАТУШКА ИНДУКТИВНОСТИ в цепи переменного токаСкачать

    Урок 28.  КАТУШКА ИНДУКТИВНОСТИ в цепи переменного тока

    Закон Фарадея-Максвелла

    В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

    • Edl = -dФ/dt – уравнение электродвижущей силы
    • Hdl = -dN/dt – уравнение магнитодвижущей силы.

    Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

    Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

    • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
    • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

    Вектор тока через индуктивность

    Рис. 3. Возникновение вихревого магнитного поля

    Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

    Видео:Ток при замыкании и размыкании цепи с индуктивностьюСкачать

    Ток при замыкании и размыкании цепи с индуктивностью

    Что мы узнали?

    Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.

    Видео:Физика 11 класс (Урок№6 - Самоиндукция. Индуктивность.)Скачать

    Физика 11 класс (Урок№6 - Самоиндукция. Индуктивность.)

    Явление электромагнитной индукции

    Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

    Явление электромагнитной индукции было открыто М. Фарадеем.

    • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
    • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
    • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

    Вектор тока через индуктивность

    Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

    Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

    Объяснения возникновения индукционного тока

    Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

    Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

    Свойства вихревого электрического поля:

    • источник – переменное магнитное поле;
    • обнаруживается по действию на заряд;
    • не является потенциальным;
    • линии поля замкнутые.

    Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

    Видео:ИндуктивностьСкачать

    Индуктивность

    Самоиндукция

    Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

    При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

    В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

    Вектор тока через индуктивность

    Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

    При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

    Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

    Вектор тока через индуктивность

    Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

    При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

    ЭДС самоиндукции ​( varepsilon_ )​, возникающая в катушке с индуктивностью ​( L )​, по закону электромагнитной индукции равна:

    Вектор тока через индуктивность

    ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

    Видео:Электромагнитная индукция. Закон Фарадея. Разбираем теорию по-честному. ОГЭ по физике 2024Скачать

    Электромагнитная индукция. Закон Фарадея. Разбираем теорию по-честному. ОГЭ по физике 2024

    Индуктивность

    Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​( Phi )​ через контур из этого проводника пропорционален модулю индукции ​( vec )​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

    Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

    Вектор тока через индуктивность

    Индуктивность – коэффициент пропорциональности ​( L )​ между силой тока ​( I )​ в контуре и магнитным потоком ​( Phi )​, создаваемым этим током:

    Вектор тока через индуктивность

    Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

    Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

    Вектор тока через индуктивность

    Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

    Видео:Индуктивность и ЭДС Самоиндукции. ЕГЭ Физика. Николай Ньютон. ТехноскулСкачать

    Индуктивность и ЭДС Самоиндукции. ЕГЭ Физика. Николай Ньютон. Техноскул

    Энергия магнитного поля

    При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

    Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

    Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

    Вектор тока через индуктивность

    Видео:Резистор, конденсатор, катушка индуктивности, сравнение свойств в электрических цепяхСкачать

    Резистор, конденсатор, катушка индуктивности, сравнение свойств в электрических цепях

    Основные формулы раздела «Электромагнитная индукция»

    Вектор тока через индуктивность

    Алгоритм решения задач по теме «Электромагнитная индукция»:

    1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

    2. Записать формулу:

    • закона электромагнитной индукции;
    • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

    3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

    4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

    5. Решить полученную систему уравнений относительно искомой величины.

    6. Решение проверить.

    Видео:Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

    Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

    Правило Ленца

    Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

    Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

    Вектор тока через индуктивность

    Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

    Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

    Видео:катушка индуктивности в цепях постоянного и переменного токаСкачать

    катушка индуктивности в цепях постоянного  и переменного тока

    Задачи на применение закона Фарадея

    Условие: проволочный контур помещен в магнитное поле. В нулевой момент времени он пронизывает поток магнитной индукции, равный Φ1 и уменьшающийся после этого до 0. Найдите величину заряда, проходящего по цепи.

    Начнем с определения мгновенного значения ЭДС. Это можно сделать с помощью формулы:

    Вспомним закон Ома. Согласно ему, мгновенное значение силы тока может быть записано в следующем виде:

    Полное сопротивление цепи здесь обозначено буквой R.

    Для нахождения заряда, идущего по цепи, нам пригодится выражение:

    Поставим эти выражения в нужную формулу и получим:

    Автором этой формулы является Фарадей. Он эмпирически подтвердил прямую пропорциональность величины заряда, идущего по цепи, количеству линий магнитной индукции, пересекающей проводник, и его обратную пропорциональность величине сопротивления в цепи.

    Условие: квадратная рамка со стороной a помещена в одну плоскость с проводником, сила тока которого равна l. Она движется поступательно с постоянной скоростью v в направлении, обозначенное на иллюстрации ниже. Вычислите ЭДС индукции как функцию εi от расстояния x.

    Вектор тока через индуктивность

    Найти ответ можно с помощью закона Фарадея.

    Для получения искомой функции Ei(x) нам нужно построить функцию Ф(x). Бесконечный проводник с током создает магнитное поле, которое может быть выражено так:

    Расстояние до точки рассмотрения здесь обозначено буквой r.

    Для решения нам нужно также выделить площадь рамки. Выразим ее такой формулой:

    С учетом приведенных выше выражений, а также того факта, что B→⊥S→, мы можем найти величину элементарного магнитного потока, проходящего через элемент квадратной рамки, так:

    Далее вычисляем величину полного потока, учитывая, что x≤r≤x+a:

    После этого переходим к нахождению ЭДС индукции с помощью закона Фарадея и выражения для магнитного потока, выведенного ранее:

    🔥 Видео

    СамоиндукцияСкачать

    Самоиндукция

    ИНДУКТИВНОСТЬ В ЦЕПИ ПЕРЕМЕННОГО И ПОСТОЯННОГО ТОКА [РадиолюбительTV 91]Скачать

    ИНДУКТИВНОСТЬ В ЦЕПИ ПЕРЕМЕННОГО И ПОСТОЯННОГО ТОКА [РадиолюбительTV 91]

    Как Индуктивность зависит от Тока?Скачать

    Как Индуктивность зависит от Тока?

    ДЛЯ ЧЕГО НУЖНА КАТУШКА ИНДУКТИВНОСТИ? #катушка #индуктивность #электроникаСкачать

    ДЛЯ ЧЕГО НУЖНА КАТУШКА ИНДУКТИВНОСТИ? #катушка #индуктивность #электроника

    Урок 358. Активное сопротивление в цепи переменного тока. Действующее значение тока и напряженияСкачать

    Урок 358. Активное сопротивление в цепи переменного тока. Действующее значение тока и напряжения

    Электромагнитная индукция. Простыми словамиСкачать

    Электромагнитная индукция. Простыми словами

    Активное и реактивное сопротивление в цепи переменного тока. 11 класс.Скачать

    Активное и реактивное сопротивление в цепи переменного тока. 11 класс.
    Поделиться или сохранить к себе: