Свойства и признаки описанного четырехугольника

Описанные четырехугольники

Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .

Свойства и признаки описанного четырехугольника

Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

Свойства и признаки описанного четырехугольника

AH = AE, BF = BE, CF = CG, DH = DG,

Складывая эти равенства, получим:

AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству

и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

Свойства и признаки описанного четырехугольника

Следовательно, справедливы равенства

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

Окружность касается касается стороны BC (рис.4).

Свойства и признаки описанного четырехугольника

В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

Окружность не касается стороны BC .

В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:

    Точка K лежит между точками C и D (рис.5)

Свойства и признаки описанного четырехугольника

Свойства и признаки описанного четырехугольника

Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

Свойства и признаки описанного четырехугольника

Свойства и признаки описанного четырехугольника

Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.

Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

Итак, возможен и реализуется лишь случай 1.

Из доказательства теоремы 2 непосредственно вытекает

Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

Примеры описанных четырёхугольников

ФигураРисунокУтверждение
РомбСвойства и признаки описанного четырехугольникаВ любой ромб можно вписать окружность
КвадратСвойства и признаки описанного четырехугольникаВ любой квадрат можно вписать окружность
ПрямоугольникСвойства и признаки описанного четырехугольникаВ прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
ПараллелограммСвойства и признаки описанного четырехугольникаВ параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
ДельтоидСвойства и признаки описанного четырехугольникаВ любой дельтоид можно вписать окружность
ТрапецияСвойства и признаки описанного четырехугольникаВ трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
Свойства и признаки описанного четырехугольника
КвадратСвойства и признаки описанного четырехугольника

В любой квадрат можно вписать окружность

ПрямоугольникСвойства и признаки описанного четырехугольника

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

ПараллелограммСвойства и признаки описанного четырехугольника

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

ДельтоидСвойства и признаки описанного четырехугольника

ТрапецияСвойства и признаки описанного четырехугольника

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Видео:Свойство и признак описанного четырехугольникаСкачать

Свойство и признак описанного четырехугольника

Свойства и признаки описанного четырехугольника.

Свойства и признаки описанного четырехугольника

Описанный четырехугольник — четырехугольник, все стороны которого касаются окружности.

Центр вписанной окружности в четырехугольник — точка пересечения биссектрис всех углов четырехугольника. Не все четырёхугольники можно описать около окружности, так как биссектрисы четырёх углов могут не пересекаться в одной точке.

Основной признак описанного четырехугольника:

Если суммы противоположных сторон четырехугольника равны, то четырехугольник является описанным.

Основное свойство описанного четырехугольника:

Если четырехугольник является описанным, то суммы противоположных сторон этого четырехугольника равны.

Видео:Свойство и признак описанного четырехугольникаСкачать

Свойство и признак описанного четырехугольника

Вписанный и описанный четырехугольник

Видео:Свойство и признак вписанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольника

Вписанный четырехугольник

Если все вершины четырехугольника лежат на одной окружности, то он называется вписанным четырехугольником .

В отличие от треугольника не всякий четырехугольник является вписанным.

Критерий вписанного четырехугольника
Сумма противолежащих углов четырехугольника равна 1 8 0 ∘ 180^ 1 8 0 ∘ тогда и только тогда, когда он вписанный.

Свойства вписанного четырехугольника:

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Описанный четырехугольник

Если все стороны четырехугольника касаются некоторой окружности , то он называется описанным четырехугольником .

Признак описанного четырехугольника
Суммы длин противолежащих сторон описанного четырехугольника равны: a + c = b + d a+c=b+d a + c = b + d .

💥 Видео

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

свойства вписанного и описанного четырехугольника #SHORTSСкачать

свойства вписанного и описанного четырехугольника #SHORTS

Свойства и признаки вписанного четырехугольникаСкачать

Свойства и признаки вписанного четырехугольника

Свойство и признак вписанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольника

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

2 ПРАВИЛА описанного четырехугольника #shortsСкачать

2 ПРАВИЛА описанного четырехугольника #shorts

вписанный и описанный четырехугольникСкачать

вписанный и описанный четырехугольник

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Свойство описанного четырёхугольникаСкачать

Свойство описанного четырёхугольника

Описанный четырехугольник ✧ Его свойства и признак ✧ Запомнить за 1 мин!Скачать

Описанный четырехугольник ✧ Его свойства и признак  ✧ Запомнить за 1 мин!

Свойство описанного четырехугольника #огэ #математика #огэматематика #данирСкачать

Свойство описанного четырехугольника #огэ #математика #огэматематика #данир

Описанные четырехугольники. 9 класс.Скачать

Описанные четырехугольники. 9 класс.

Описанный четырехугольникСкачать

Описанный четырехугольник

11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

Четырехугольник, описанный около окружности | Геометрия 8-9 классыСкачать

Четырехугольник, описанный около окружности | Геометрия 8-9 классы

Геометрия. Признак описанного четырехугольника.Скачать

Геометрия. Признак описанного четырехугольника.
Поделиться или сохранить к себе: