Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .
Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.
Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.
Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).
AH = AE, BF = BE, CF = CG, DH = DG,
Складывая эти равенства, получим:
AH + BF + CF + DH = 
= AD + BC, 
AE + BE + CG + DG = 
= AB + CD,
то справедливо равенство
что и требовалось доказать.
Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.
Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству
и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).
Следовательно, справедливы равенства
из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:
Окружность касается касается стороны BC (рис.4).
В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.
Окружность не касается стороны BC .
В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:
-  Точка K лежит между точками C и D (рис.5)
Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:
Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.
Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.
Итак, возможен и реализуется лишь случай 1.
Из доказательства теоремы 2 непосредственно вытекает
Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.
В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.
Примеры описанных четырёхугольников
| Фигура | Рисунок | Утверждение | 
| Ромб |  | В любой ромб можно вписать окружность | 
| Квадрат |  | В любой квадрат можно вписать окружность | 
| Прямоугольник |  | В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом | 
| Параллелограмм |  | В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом | 
| Дельтоид |  | В любой дельтоид можно вписать окружность | 
| Трапеция |  | В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований | 
| Ромб | 
|  | 

В любой квадрат можно вписать окружность

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом


В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Видео:Свойство и признак описанного четырехугольникаСкачать

Свойства и признаки описанного четырехугольника.
Описанный четырехугольник — четырехугольник, все стороны которого касаются окружности.
Центр вписанной окружности в четырехугольник — точка пересечения биссектрис всех углов четырехугольника. Не все четырёхугольники можно описать около окружности, так как биссектрисы четырёх углов могут не пересекаться в одной точке.
Основной признак описанного четырехугольника:
Если суммы противоположных сторон четырехугольника равны, то четырехугольник является описанным.
Основное свойство описанного четырехугольника:
Если четырехугольник является описанным, то суммы противоположных сторон этого четырехугольника равны.
Видео:Свойство и признак описанного четырехугольникаСкачать

Вписанный и описанный четырехугольник
Видео:Свойство и признак вписанного четырехугольникаСкачать

Вписанный четырехугольник
Если все вершины четырехугольника лежат на одной окружности, то он называется вписанным четырехугольником .
В отличие от треугольника не всякий четырехугольник является вписанным.
Критерий вписанного четырехугольника 
Сумма противолежащих углов четырехугольника равна 1 8 0 ∘ 180^ 1 8 0 ∘ тогда и только тогда, когда он вписанный.
Свойства вписанного четырехугольника:
Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Описанный четырехугольник
Если все стороны четырехугольника касаются некоторой окружности , то он называется описанным четырехугольником .
Признак описанного четырехугольника 
Суммы длин противолежащих сторон описанного четырехугольника равны: a + c = b + d a+c=b+d a + c = b + d .
💥 Видео
3 правила для вписанного четырехугольника #shortsСкачать

свойства вписанного и описанного четырехугольника #SHORTSСкачать

Свойства и признаки вписанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольникаСкачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

2 ПРАВИЛА описанного четырехугольника #shortsСкачать

вписанный и описанный четырехугольникСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Свойство описанного четырёхугольникаСкачать

Описанный четырехугольник ✧ Его свойства и признак ✧ Запомнить за 1 мин!Скачать

Свойство описанного четырехугольника #огэ #математика #огэматематика #данирСкачать

Описанные четырехугольники. 9 класс.Скачать

Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольникСкачать

Четырехугольник, описанный около окружности | Геометрия 8-9 классыСкачать

Геометрия. Признак описанного четырехугольника.Скачать









