В школьном курсе теорема Вариньона часто фигурирует в качестве обычной задачи, в которой требуется доказать, что середины сторон четырёхугольника являются вершинами параллелограмма.
Её доказательство основано на свойствах средней линии треугольника.
Середины сторон четырёхугольника являются вершинами параллелограмма.
Дано: ABCD — четырёхугольник,
M, N, K, F — середины его сторон.
Доказать : MNKF — параллелограмм.
1) Проведём диагональ AC.
2) Рассмотрим треугольник ABC.
Так как точки M и N — середины сторон AB и BC, отрезок MN — средняя линия треугольника ABC.
3) Аналогично, FK — средняя линия треугольника ADC и
4) По признаку параллельности прямых, две прямые, параллельные третьей прямой, параллельны между собой:
5) В четырёхугольнике MKNF противоположные стороны параллельны и равны. Следовательно, MKNF — параллелограмм (по признаку).
Что и требовалось доказать.
Поскольку в школьном курсе геометрии рассматриваются только выпуклые четырёхугольники, доказательство приведено только для этого случая. Но и для невыпуклых четырёхугольников (в том числе, и для самопересекающихся), теорема также верна (доказывается аналогично).
Параллелограмм, образованный серединами сторон четырёхугольника, называется параллелограммом Вариньона (вариньоновским, вариньоновым).
Периметр параллелограмма Вариньона равен сумме диагоналей исходного параллелограмма:
(так как стороны MNKF равны половине диагонали AC или BD).
Площадь параллелограмма Вариньона равна половине площади исходного параллелограмма:
углы COD и NMF равны (как внутренние накрест лежащие при параллельных прямых AC и MN и секущей BD),
- Докажите, что середины сторон выпуклого четырёхугольника являются вершинами параллелограмма, площадь которого равна половине площади данного четырёхугольника.
- Ваш ответ
- решение вопроса
- Похожие вопросы
- Урок геометрии по теме «Теорема Вариньона. Решение задач». 8-й класс
- Презентация к уроку
- Ход урока
- Введение
- 1. Теоретическая часть
- 2. Практическая часть. Решение задач.
- Заключение
- 🎥 Видео
Видео:№43. Докажите, что середины сторон пространственного четырехугольника* являютсяСкачать
Докажите, что середины сторон выпуклого четырёхугольника являются вершинами параллелограмма, площадь которого равна половине площади данного четырёхугольника.
Видео:№568. Докажите, что четырехугольник — ромб, если его вершинами являются середины сторон:Скачать
Ваш ответ
Видео:№567. Докажите, что середины сторон произвольного четырехугольника являютсяСкачать
решение вопроса
Видео:Геометрия Вершины четырехугольника являются середины сторон прямоугольника с диагональю 12 смСкачать
Похожие вопросы
- Все категории
- экономические 43,277
- гуманитарные 33,618
- юридические 17,900
- школьный раздел 606,658
- разное 16,822
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
Видео:Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать
Урок геометрии по теме «Теорема Вариньона. Решение задач». 8-й класс
Класс: 8
Презентация к уроку
Загрузить презентацию (276 кБ)
Цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.
Задачи:
- Изучить теоретический материал: понятия «параллелограмм Вариньона», бимедианы четырехугольника, разобрать доказательство теоремы Вариньона и следствия из нее.
- Сравнить количество времени, необходимое для решения задач традиционным способом и, используя теорему Вариньона.
- Показать решение олимпиадных заданий с помощью параллелограмма Вариньона.
Видео:№163. Докажите, что середины сторон равнобедренного треугольника являются вершинами другого равнобедСкачать
Ход урока
Введение
В 21 век, в век информационных технологий, главным ресурсом является время. Тысячи людей желают посещать тренинги, семинары и лекции по тайм-менеджменту, где бы их научили, как рационально, с минимальными потерями и максимальной пользой использовать свое время. Большую часть времени у ученика занимает обучение в школе и приготовление домашнего задания. Одним из самых сложных предметов в школе является геометрия. В частности, задачи на доказательство требуют значительной траты времени, поэтому у многих отсутствует интерес к решению подобных заданий. В теме «Четырехугольники» эту проблему может решить использование теоремы Вариньона.
Пьер Вариньон – французский математик и механик 18 века, который первым доказал, что середины сторон выпуклого четырехугольника являются вершинами параллелограмма. Эта теорема вызвала интерес у отечественных ученых лишь в 20 веке. Подробно ее применение показал украинский геометр – Г.Б.Филипповский и кандидат физико-математических наук, доцент МГУ В.В. Вавилов. В школе теорема Вариньона не входит в курс программы, но считаю изучение её необходимым.
1. Теоретическая часть
Вариньон Пьер [1] (1654–1722)
Пьер Вариньон родился во Франции в 1654 году. Обучался в иезуитском коллеже и университете в Кане, где стал магистром в 1682 году. Вариньон готовился к религиозной деятельности, но, изучая сочинения Эвклида и Декарта, увлекся математикой и механикой. Труды Вариньона посвящены теоретической механике, анализу бесконечно малых, геометрии, гидромеханике и физике. Вариньон был одним из первых ученых, ознакомивших Францию с анализом бесконечно малых. В конце 17 и начале 18 в. Вариньон руководил «Журналом ученых», в котором помещали свои работы по исчислению бесконечно малых братья Бернулли. В геометрии Вариньон изучал различные специальные кривые, в частности ввел термин «логарифмическая спираль». Главные заслуги Вариньона относятся к теоретической механике, а именно к геометрической статике. В 1687 Вариньон представил в Парижскую АН сочинение «Проект новой механики. », в котором сформулировал закон параллелограмма сил. В 1725 в Париже был издан трактат Вариньона «Новая механика или статика», представляющий собой систематическое изложение учения о сложении и разложении сил, о моментах сил и правилах оперирования ими, почти без изменений сохранившееся в учебниках статики до нашего времени. Написал учебник по элементарной геометрии (издан в 1731).
Теорема Вариньона [2]
Четырехугольник, образованный путем последовательного соединения середин сторон выпуклого четырехугольника, является параллелограммом, и его площадь равна половине площади данного четырехугольника.