Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Определение и задачи логики

Определение логики. Для того чтобы определить, что такое логика, мы должны предварительно выяснить, в чём заключается цель человеческого познания. Цель познания заключается в достижении истины при помощи мышления, цель познания есть истина. Логика же есть наука, которая показывает, как должно совершаться мышление, чтобы была достигнута истина; каким правилам мышление должно подчиняться для того, чтобы была достигнута истина. При помощи мышления истина иногда достигается, а иногда не достигается. То мышление, при помощи которого достигается истина, должно быть названо правильным мышлением. Таким образом, логика может быть определена как наука о законах правильного мышления, или наука о законах, которым подчиняется правильное мышление.

Из этого определения видно, что логика исследует законы мышления. Но так как исследование законов мышления как известного класса психических процессов является также предметом психологии, то предмет логики выяснится лучше в том случае, если мы рассмотрим отличие логики от психологии в исследовании законов мышления.

Психология и логика. На мышление мы можем смотреть с двух точек зрения. Мы можем на него смотреть, прежде всего, как на известный процесс, законы которого мы исследуем. Это будет точка зрения психологическая. Психология изучает, как совершается процесс мышления. С другой стороны, мы можем смотреть на мышление, как на средство достижения истины. Логика исследует, каким законам должно подчиняться мышление, чтобы оно могло привести к истине.

Итак, разница между психологией и логикой в отношении к процессу мышления может быть выражена следующим образом. Психология рассматривает безразлично всевозможные роды мыслительной деятельности: рассуждение гения, бред больного, мыслительный процесс ребёнка, животного – для психологии представляют одинаковый интерес, потому что она рассматривает только, как осуществляется процесс мышления; логика же рассматривает условия, при которых мысль может быть правильной. В этом отношении логика сближается с грамматикой. Подобно тому, как грамматика указывает правила, которым должна подчиняться речь, чтобы быть правильной, так логика указывает нам законы, которым должно подчиняться наше мышление для того, чтобы быть правильным.

Для того чтобы понять утверждение, что существуют известные правила, которым должно подчиняться мышление, рассмотрим, в чём заключается задача логики.

Задача логики. Есть положения или факты, истинность которых усматривается непосредственно, и есть положения или факты, истинность которых усматривается посредственно, именно через посредство других положений или фактов. Если я скажу: «я голоден», «я слышу звук», «я ощущаю тяжесть», «я вижу, что этот предмет большой», «я вижу, что этот предмет движется» и т.п., то я выражу факты, которые должны считаться непосредственно познаваемыми. Такого рода факты мы можем назвать также непосредственно очевидными, потому что они не нуждаются ни в каком доказательстве: их истинность очевидна без доказательств. В самом деле, разве я нуждаюсь в доказательстве, что передо мной находится предмет, имеющий зелёный цвет? Неужели, если бы кто-нибудь стал доказывать, что этот предмет не зелёный, а чёрный, я поверил бы ему? Этот факт для меня непосредственно очевиден. К числу непосредственно очевидных положений относятся, прежде всего, те положения, которые являются результатом чувственного восприятия.

Все те факты, которые совершаются в нашем отсутствии (например, прошедшие явления, а также и будущие), могут быть познаваемы только посредственно. Я вижу, что дождь идёт, – это факт непосредственного познания; что ночью шёл дождь, есть факт посредственного познания, потому что я об этом узнаю через посредство другого факта, именно того факта, что почва мокрая. Факты посредственного познания или просто посредственное познание является результатом умозаключения, вывода. По развалинам я умозаключаю, что здесь был город. Если бы я был на этом месте тысячу лет назад, то я непосредственно воспринял бы этот город. По следам я заключаю, что здесь проехал всадник. Если бы я был здесь час назад, то я непосредственно воспринял бы самого всадника.

Посредственное знание доказывается, делается убедительным, очевидным при помощи знаний непосредственных. Этот последний процесс называется доказательством.

Таким образом, есть положения, которые не нуждаются в доказательствах, и есть положения, которые нуждаются в доказательствах и очевидность которых усматривается посредственно, косвенно.

Если есть положения, которые нуждаются в доказательствах, то в чём же заключается доказательство? Доказательство заключается в том, что мы положения неочевидные стараемся свести к положениям или фактам непосредственно очевидным или вообще очевидным. Такого рода сведение положений неочевидных к положениям очевидным лучше всего можно видеть на доказательствах математических. Если возьмём, например, теорему Пифагора, то она на первый взгляд совсем не очевидна.

Но если мы станем её доказывать, то, переходя от одного положения к другому, мы придём в конце концов к аксиомам и определениям, которые имеют непосредственно очевидный характер. Тогда и самая теорема сделается для нас очевидной. Таким образом, познание посредственное нуждается в доказательствах; познание непосредственное в доказательствах не нуждается и служит основой для доказательства познаний посредственных.

Заметив такое отношение между положениями посредственно очевидными и положениями непосредственно очевидными, мы можем понять задачи логики. Когда мы доказываем что-либо, т.е. когда мы сводим неочевидные положения к непосредственно очевидным, то в этом процессе сведения мы можем сделать ошибку: наше умозаключение может быть ошибочным. Но существуют определённые правила, которые показывают, как отличать умозаключения правильные от умозаключений ошибочных. Эти правила указывает логика. Задача логики поэтому заключается в том, чтобы показать, каким правилам должно следовать умозаключение, чтобы быть верным. Если мы эти правила знаем, то мы можем определить, соблюдены ли они в том или другом процессе умозаключения.

Из такого определения задач логики можно понять значение логики.

Значение и польза логики. Для выяснения значения логики обыкновенно принято исходить из определения её. Мы видели, что логика определяется как наука о законах правильного мышления. Из этого определения логики, по-видимому, следует, что стоит изучить законы правильного мышления и применять их в процессе мышления, чтобы можно было мыслить вполне правильно. Многим даже кажется, что логика может указывать средства для открытия истины в различных областях знания.

Но в действительности это неверно. Логика не поставляет своею целью открытие истин, а ставит своею целью доказательство уже открытых истин. Логика указывает правила, при помощи которых могут быть открыты ошибки. Вследствие этого, благодаря логике можно избежать ошибок. Поэтому становится понятным утверждение английского философа Дж. С. Милля, что польза логики главным образом отрицательная. Её задача заключается в том, чтобы предостеречь от возможных ошибок. Вследствие этого практическая важность логики чрезвычайно велика. «Когда я принимаю в соображение, – говорит Дж. С. Милль, – как проста теория умозаключения, какого небольшого времени достаточно для приобретения полного знания её принципов и правил и даже значительной опытности в их применении, я не нахожу никакого извинения для тех, кто, желая заниматься с успехом каким-нибудь умственным трудом, упускает это изучение. Логика есть великий преследователь тёмного и запутанного мышления; она рассеивает туман, скрывающий от нас наше невежество и заставляющий нас думать, что мы понимаем предмет, в то время когда мы его не понимаем. Я убеждён, что в современном воспитании ничто не приносит большей пользы для выработки точных мыслителей, остающихся верными смыслу слов и предложений и находящихся постоянно настороже против терминов неопределённых и двусмысленных, как логика».

Содержание
  1. Отношение рода и вида между понятиями
  2. Четырехугольник — виды и свойства с примерами решения
  3. Внутренние и внешние углы четырехугольника
  4. Сумма внутренних углов выпуклого четырёхугольника
  5. Сумма внешних углов выпуклого четырёхугольника
  6. Параллелограмм
  7. Параллелограмм и его свойства
  8. Признаки параллелограмма
  9. Прямоугольник
  10. Признак прямоугольника
  11. Ромб и квадрат
  12. Свойства ромба
  13. Трапеция
  14. Средняя линия треугольника
  15. Средняя линия трапеции
  16. Координаты середины отрезка
  17. Теорема Пифагора
  18. Справочный материал по четырёхугольнику
  19. Пример №1
  20. Признаки параллелограмма
  21. Пример №2 (признак параллелограмма).
  22. Прямоугольник
  23. Пример №3 (признак прямоугольника).
  24. Ромб. Квадрат
  25. Пример №4 (признак ромба)
  26. Теорема Фалеса. Средняя линия треугольника
  27. Пример №5
  28. Пример №6
  29. Трапеция
  30. Пример №7 (свойство равнобедренной трапеции).
  31. Центральные и вписанные углы
  32. Пример №8
  33. Вписанные и описанные четырёхугольники
  34. Пример №9
  35. Пример №10
  36. 🌟 Видео

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Отношение рода и вида между понятиями

Математические понятия могут находиться в разных отноше­ниях.

Понятия находятся в отношении рода и вида, если объем одного понятия включает объем другого понятия, но не совпадает с ним.

1)Квадрат и прямоугольник находятся в отношении рода и вида, где прямоугольник — родовое понятие, а квадрат — видовое поня­тие, так как все квадраты являются прямоугольниками, но не все прямоугольники являются квадратами.

2) Отрезок и прямая не находятся в отношении рода и вида, так как отрезок — это часть прямой, а не ее разновидность. Они нахо­дятся в отношении части и целого.

Родовое и видовое понятия четырехугольникаУже в дошкольном возрасте дети рано начинают понимать ро­довидовые отношения, не называя их явно. Например, выполняя задание: «Назови одним словом» (рис. 4), они подразумевают, что понятия «квадрат», «прямоугольник», «трапеция», «ромб»,

«параллелограмм» являются видовыми по отношению к понятию «четырехугольника.

Если объемы понятий совпадают, то эти понятия тождественны.

Например, понятия «равносторонний треугольник» и «равно­угольный треугольник» тождественны. В школе на уроках русского языка дети изучают понятие «синонимы» — слова, различные по звучанию, но тождественные по смыслу.

Некоторые особенности родовидовых отношений между понятиями

1) Понятия рода и вида относительны. Одно и то же понятие мо­жет быть родовым по отношению к одному понятию и видовым по отношению к другому. Например: понятие «прямоугольник» — ро­довое к понятию «квадрат», но видовое к понятию «четырехуголь­ник».

2) Для данного понятия часто можно указать несколько родовых понятий. Например, для понятия «квадрате родовыми являются по­нятия «прямоугольник», «ромб», «четырехугольник», «многоуголь­ник», «геометрическая фигура».

3) Видовое понятие обладает всеми свойствами родового понятия. Например: квадрат обладает всеми свойствами прямоугольника.

4) Если два понятия находятся в отношении рода и вида, то между их объемами и содержаниями существует взаимосвязь: если объем больше, то содержание меньше, и наоборот. Например, объем понятия «прямоугольник» больше, чем объем понятия «квадрат», так как все объекты второго понятия являются и объектами первого понятия. Содержание понятия «прямоугольник» меньше, чем содер­жание понятия «квадрат», так как квадрат обладает всеми свойства­ми прямоугольника и еще другими свойствами, присущими только ему.

Задание 2

Назовите, какие из перечисленных понятий находятся в отношении рода и вида: круг, ломаная, треугольник, отрезок, многоугольник, радиус, окружность.

Определение понятий

Для распознавания объекта необязательно проверять у него существенные свойства, достаточно лишь некоторых. Этим полются, когда понятию дают определение.

Определение понятия — это логическая операция, которая укрывает содержание понятия либо устанавливает значение терм

Определение понятия позволяет отличать определяемые проекты от других объектов. Так, например, определение понятий «прямоугольный треугольник» позволяет отличить его от др: треугольников.

Существуют различные виды определений. Различают явные и неявные определения (рис. 5).

Родовое и видовое понятия четырехугольника

Явные определения имеют форму равенства двух понятий. С из них называют определяемым, другое — определяющим.

Например: «Прямоугольный треугольник — это треугольна которого есть прямой угол». Здесь определяемое понятие — «примоугольный треугольник», а определяющее — «треугольник, у кого есть прямой угол».

Самый распространенный вид явных определений — это о деление через род и видовое отличие. Приведенное выше определение прямоугольного треугольника относится к таким определяем. Понятие «треугольник», содержащееся в определяющем птиц, является ближайшим родовым понятием по отношению понятию «прямоугольный треугольник», а свойство «иметь пругол» позволяет из всех треугольников выделить один из вид прямоугольный треугольник.

Видовое отличие — существенное свойство, которое отличае видовое понятие от всего рода.

Структура определения через род и видовое отличие изобра; схематично на рисунке 6. По данной схеме можно строить ощления понятий не только в математике, но и в других науках.

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Родовое и видовое понятия четырехугольника

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Родовое и видовое понятия четырехугольника

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Родовое и видовое понятия четырехугольника

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Родовое и видовое понятия четырехугольника

Видео:Геометрия 8. Урок 1 - Виды четырехугольников - генеалогическое древо :)Скачать

Геометрия 8. Урок 1 - Виды четырехугольников - генеалогическое древо :)

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Родовое и видовое понятия четырехугольникауглы Родовое и видовое понятия четырехугольникаявляются внешними.

Родовое и видовое понятия четырехугольника

Каждый внутренний угол выпуклого четырёхугольника меньше Родовое и видовое понятия четырехугольникаГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Родовое и видовое понятия четырехугольникаРодовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Родовое и видовое понятия четырехугольникаДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Родовое и видовое понятия четырехугольника

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Родовое и видовое понятия четырехугольника

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Родовое и видовое понятия четырехугольника

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Родовое и видовое понятия четырехугольникаРодовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Родовое и видовое понятия четырехугольника

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Родовое и видовое понятия четырехугольника

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Родовое и видовое понятия четырехугольника

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Родовое и видовое понятия четырехугольника

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Родовое и видовое понятия четырехугольникато параллелограмм Родовое и видовое понятия четырехугольникаявляется ромбом.

Родовое и видовое понятия четырехугольника

Доказательство теоремы 1.

Дано: Родовое и видовое понятия четырехугольникаромб.

Докажите, что Родовое и видовое понятия четырехугольника

Доказательство (словестное): По определению ромба Родовое и видовое понятия четырехугольникаПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Родовое и видовое понятия четырехугольникаравнобедренный. Медиана Родовое и видовое понятия четырехугольника(так как Родовое и видовое понятия четырехугольника), является также и биссектрисой и высотой. Т.е. Родовое и видовое понятия четырехугольникаТак как Родовое и видовое понятия четырехугольникаявляется прямым углом, то Родовое и видовое понятия четырехугольника. Аналогичным образом можно доказать, что Родовое и видовое понятия четырехугольника

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Родовое и видовое понятия четырехугольника

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Родовое и видовое понятия четырехугольника

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Родовое и видовое понятия четырехугольника

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

План доказательства теоремы 2

Дано: Родовое и видовое понятия четырехугольникаравнобедренная трапеция. Родовое и видовое понятия четырехугольника

Докажите: Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Родовое и видовое понятия четырехугольникатогда Родовое и видовое понятия четырехугольникаЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Родовое и видовое понятия четырехугольникапроведем параллельную прямую к прямой Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Родовое и видовое понятия четырехугольникачерез точку Родовое и видовое понятия четырехугольника— середину стороны Родовое и видовое понятия четырехугольникапроведите прямую параллельную Родовое и видовое понятия четырехугольникаКакая фигура получилась? Является ли Родовое и видовое понятия четырехугольникатрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Родовое и видовое понятия четырехугольникаМожно ли утверждать, что Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Доказательство. Пусть дан треугольник Родовое и видовое понятия четырехугольникаи его средняя линия Родовое и видовое понятия четырехугольникаПроведём через точку Родовое и видовое понятия четырехугольникапрямую параллельную стороне Родовое и видовое понятия четырехугольникаПо теореме Фалеса, она проходит через середину стороны Родовое и видовое понятия четырехугольникат.е. совпадает со средней линией Родовое и видовое понятия четырехугольникаТ.е. средняя линия Родовое и видовое понятия четырехугольникапараллельна стороне Родовое и видовое понятия четырехугольникаТеперь проведём среднюю линию Родовое и видовое понятия четырехугольникаТ.к. Родовое и видовое понятия четырехугольникато четырёхугольник Родовое и видовое понятия четырехугольникаявляется параллелограммом. По свойству параллелограмма Родовое и видовое понятия четырехугольникаПо теореме Фалеса Родовое и видовое понятия четырехугольникаТогда Родовое и видовое понятия четырехугольникаТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Родовое и видовое понятия четырехугольника

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Родовое и видовое понятия четырехугольника

Доказательство: Через точку Родовое и видовое понятия четырехугольникаи точку Родовое и видовое понятия четырехугольникасередину Родовое и видовое понятия четырехугольникапроведём прямую и обозначим точку пересечения со стороной Родовое и видовое понятия четырехугольникачерез Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Родовое и видовое понятия четырехугольникарадиусом 3 единицы. Вычислите значение выражения Родовое и видовое понятия четырехугольникаЕсть ли связь между значением данного выражения и координатой точки Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Родовое и видовое понятия четырехугольникаи Родовое и видовое понятия четырехугольникаи точка Родовое и видовое понятия четырехугольникакоторая является серединой отрезка Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольникато Родовое и видовое понятия четырехугольникаа отсюда следует, что Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

2) По теореме Фалеса, если точка Родовое и видовое понятия четырехугольникаявляется серединой отрезка Родовое и видовое понятия четырехугольникато на оси абсцисс точка Родовое и видовое понятия четырехугольникаявляется соответственно координатой середины отрезка концы которого находятся в точках Родовое и видовое понятия четырехугольникаи Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

3) Координаты середины отрезка Родовое и видовое понятия четырехугольникас концами Родовое и видовое понятия четырехугольникаи Родовое и видовое понятия четырехугольникаточки Родовое и видовое понятия четырехугольниканаходятся так:

Родовое и видовое понятия четырехугольника

Убедитесь, что данная формула верна в случае, если отрезок Родовое и видовое понятия четырехугольникапараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Родовое и видовое понятия четырехугольникакак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Родовое и видовое понятия четырехугольника

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Родовое и видовое понятия четырехугольника

Шаг 4. На сторонах другого квадрата отметьте отрезки Родовое и видовое понятия четырехугольникакак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Родовое и видовое понятия четырехугольника

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Родовое и видовое понятия четырехугольника

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Родовое и видовое понятия четырехугольника

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Родовое и видовое понятия четырехугольникато, Родовое и видовое понятия четырехугольника— прямоугольный.

Родовое и видовое понятия четырехугольника

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Родовое и видовое понятия четырехугольникаявляются Пифагоровыми тройками, то и числа Родовое и видовое понятия четырехугольникатакже являются Пифагоровыми тройками.

Видео:Свойство и признак вписанного четырехугольникаСкачать

Свойство и признак вписанного четырехугольника

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Родовое и видовое понятия четырехугольника(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Родовое и видовое понятия четырехугольникаРодовое и видовое понятия четырехугольника

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Родовое и видовое понятия четырехугольника

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Родовое и видовое понятия четырехугольника, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Родовое и видовое понятия четырехугольника

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Родовое и видовое понятия четырехугольника=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Родовое и видовое понятия четырехугольника+ CD (по неравенству треугольника). Тогда Родовое и видовое понятия четырехугольника. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Родовое и видовое понятия четырехугольника. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Родовое и видовое понятия четырехугольника

Решение:

Родовое и видовое понятия четырехугольника(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Родовое и видовое понятия четырехугольника(АВ CD, ВС-секущая), Родовое и видовое понятия четырехугольника(ВС || AD, CD — секущая), Родовое и видовое понятия четырехугольника(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Родовое и видовое понятия четырехугольника

Доказательство. Родовое и видовое понятия четырехугольникапо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Родовое и видовое понятия четырехугольникакак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Родовое и видовое понятия четырехугольника

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Родовое и видовое понятия четырехугольника

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Родовое и видовое понятия четырехугольникапо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Родовое и видовое понятия четырехугольника Родовое и видовое понятия четырехугольникаУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Родовое и видовое понятия четырехугольника

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Родовое и видовое понятия четырехугольника

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Родовое и видовое понятия четырехугольникапо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Родовое и видовое понятия четырехугольникакак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Родовое и видовое понятия четырехугольникаНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Родовое и видовое понятия четырехугольника

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Родовое и видовое понятия четырехугольникапо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Родовое и видовое понятия четырехугольникакак вертикальные. Из равенства треугольников следует: ВС= AD и Родовое и видовое понятия четырехугольникаНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Родовое и видовое понятия четырехугольника

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Родовое и видовое понятия четырехугольника

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Родовое и видовое понятия четырехугольника

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Родовое и видовое понятия четырехугольникаМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Родовое и видовое понятия четырехугольника. Родовое и видовое понятия четырехугольникапо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Родовое и видовое понятия четырехугольника. Поскольку в параллелограмме противоположные углы равны, то: Родовое и видовое понятия четырехугольника. По свойству углов четырёхугольника, Родовое и видовое понятия четырехугольника

Следовательно, Родовое и видовое понятия четырехугольника: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Родовое и видовое понятия четырехугольника

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Родовое и видовое понятия четырехугольника

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Родовое и видовое понятия четырехугольника

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Родовое и видовое понятия четырехугольника

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Родовое и видовое понятия четырехугольника. Родовое и видовое понятия четырехугольника

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Родовое и видовое понятия четырехугольника

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Родовое и видовое понятия четырехугольника(рис. 96). Докажем, что ABCD— ромб. Родовое и видовое понятия четырехугольникапо двум сторонами и углу между ними.

Родовое и видовое понятия четырехугольника

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Родовое и видовое понятия четырехугольникапо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Родовое и видовое понятия четырехугольника

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Родовое и видовое понятия четырехугольника

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Родовое и видовое понятия четырехугольника

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Родовое и видовое понятия четырехугольника

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Родовое и видовое понятия четырехугольника

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Родовое и видовое понятия четырехугольникаи Родовое и видовое понятия четырехугольникаПроведите с помощью чертёжного угольника и линейки через точки Родовое и видовое понятия четырехугольникапараллельные прямые, которые пересекут сторону ВС этого угла в точках Родовое и видовое понятия четырехугольникаПри помощи циркуля сравните длины отрезков Родовое и видовое понятия четырехугольникаСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Доказать: Родовое и видовое понятия четырехугольника

Доказательство. Проведём через точки Родовое и видовое понятия четырехугольникапрямые Родовое и видовое понятия четырехугольникапараллельные ВС. Родовое и видовое понятия четырехугольникапо стороне и прилежащим к ней углам. У них Родовое и видовое понятия четырехугольникапо условию, Родовое и видовое понятия четырехугольникакак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Родовое и видовое понятия четырехугольникаи Родовое и видовое понятия четырехугольникакак противоположные стороны параллелограммов Родовое и видовое понятия четырехугольника

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Родовое и видовое понятия четырехугольника

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Родовое и видовое понятия четырехугольника

Отложим на луче АС пять равных отрезков: АА,Родовое и видовое понятия четырехугольникаПроведём прямую Родовое и видовое понятия четырехугольника. Через точки Родовое и видовое понятия четырехугольникапроведём прямые, параллельные прямой Родовое и видовое понятия четырехугольника. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Родовое и видовое понятия четырехугольника, так как точки М и N — середины сторон АВ и ВС.

Родовое и видовое понятия четырехугольника

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Родовое и видовое понятия четырехугольника(рис. 122), AD = BD, СЕ= BE.

Родовое и видовое понятия четырехугольника

Доказать: Родовое и видовое понятия четырехугольника

Доказательство. 1) Пусть DE- средняя линия Родовое и видовое понятия четырехугольника. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Родовое и видовое понятия четырехугольника. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Родовое и видовое понятия четырехугольника

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Родовое и видовое понятия четырехугольника

Поэтому Родовое и видовое понятия четырехугольника. КР— средняя линия треугольника ADC. Поэтому КР || АС и Родовое и видовое понятия четырехугольника

Получаем: MN || АС и КР || АС, отсюда MN || КРРодовое и видовое понятия четырехугольника, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Родовое и видовое понятия четырехугольника

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Родовое и видовое понятия четырехугольника

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Родовое и видовое понятия четырехугольника

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Родовое и видовое понятия четырехугольника= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Родовое и видовое понятия четырехугольника

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Родовое и видовое понятия четырехугольникаno стороне и прилежащим к ней углам. У них CF = FD по условию, Родовое и видовое понятия четырехугольникакак вертикальные, Родовое и видовое понятия четырехугольникавнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Родовое и видовое понятия четырехугольника

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Родовое и видовое понятия четырехугольникаравнобедренный. Поэтому Родовое и видовое понятия четырехугольникасоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Родовое и видовое понятия четырехугольника

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Родовое и видовое понятия четырехугольника

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Родовое и видовое понятия четырехугольникаРодовое и видовое понятия четырехугольника

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Родовое и видовое понятия четырехугольника— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Родовое и видовое понятия четырехугольника

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Родовое и видовое понятия четырехугольника. По свойству внешнего угла треугольника, Родовое и видовое понятия четырехугольникаРодовое и видовое понятия четырехугольника— равнобедренный (ОВ= OA = R). Поэтому Родовое и видовое понятия четырехугольникаизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Родовое и видовое понятия четырехугольника

Из доказанного в первом случае следует, что Родовое и видовое понятия четырехугольникаизмеряется половиной дуги AD, a Родовое и видовое понятия четырехугольника— половиной дуги DC. Поэтому Родовое и видовое понятия четырехугольникаизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Родовое и видовое понятия четырехугольника

Родовое и видовое понятия четырехугольника

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Родовое и видовое понятия четырехугольника

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Родовое и видовое понятия четырехугольникакак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Родовое и видовое понятия четырехугольника, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Родовое и видовое понятия четырехугольника

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Родовое и видовое понятия четырехугольника(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Родовое и видовое понятия четырехугольника(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Родовое и видовое понятия четырехугольника

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Родовое и видовое понятия четырехугольника

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Родовое и видовое понятия четырехугольника

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Родовое и видовое понятия четырехугольника

Доказать: Родовое и видовое понятия четырехугольника

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Родовое и видовое понятия четырехугольника

Тогда Родовое и видовое понятия четырехугольника

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Родовое и видовое понятия четырехугольника

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Родовое и видовое понятия четырехугольника

Докажем, что Родовое и видовое понятия четырехугольника. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Родовое и видовое понятия четырехугольника. По свойству равнобокой трапеции, Родовое и видовое понятия четырехугольника

Тогда Родовое и видовое понятия четырехугольникаи, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Родовое и видовое понятия четырехугольника

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Родовое и видовое понятия четырехугольника

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Родовое и видовое понятия четырехугольникацентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Родовое и видовое понятия четырехугольникавписанного в окружность. Действительно,

Родовое и видовое понятия четырехугольника

Следовательно, четырёхугольник Родовое и видовое понятия четырехугольника— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Родовое и видовое понятия четырехугольника

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Родовое и видовое понятия четырехугольника

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🌟 Видео

Миникурс по геометрии. ЧетырехугольникиСкачать

Миникурс по геометрии. Четырехугольники

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Четырехугольники. Геометрия 8 класс.Скачать

Четырехугольники.  Геометрия 8 класс.

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

11 класс, 43 урок, Вписанный четырехугольникСкачать

11 класс, 43 урок, Вписанный четырехугольник

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

ГЕОМЕТРИЯ 8 класс: Четырехугольники | Видеоурок с теорией и решением задачиСкачать

ГЕОМЕТРИЯ 8 класс: Четырехугольники | Видеоурок с теорией и решением задачи

Четырехугольники. Вебинар | МатематикаСкачать

Четырехугольники. Вебинар | Математика

Отношения между понятиями ЛОГИКА Урок 5Скачать

Отношения между понятиями ЛОГИКА  Урок 5

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольника

Вписанные четырехугольники. 9 класс.Скачать

Вписанные четырехугольники. 9 класс.

ЧЕТЫРЕХУГОЛЬНИКИ и их свойства+доказательство теорем/8 класс.Скачать

ЧЕТЫРЕХУГОЛЬНИКИ и их свойства+доказательство теорем/8 класс.

Красивое детище ЛЮБОГО четырёхугольника. Теорема Вариньона и её следствияСкачать

Красивое детище ЛЮБОГО четырёхугольника. Теорема Вариньона и её следствия

Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать

Что такое выпуклый четырёхугольник? | Математика 8 класс  |  Геометрия 8 класс | МегаШкола
Поделиться или сохранить к себе: