Произведения противоположных сторон четырехугольника равны

Четырехугольники, вписанные в окружность. Теорема Птолемея
Произведения противоположных сторон четырехугольника равныВписанные четырехугольники и их свойства
Произведения противоположных сторон четырехугольника равныТеорема Птолемея

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Произведения противоположных сторон четырехугольника равны

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Произведения противоположных сторон четырехугольника равны

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Произведения противоположных сторон четырехугольника равны
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Произведения противоположных сторон четырехугольника равны

ФигураРисунокСвойство
Окружность, описанная около параллелограммаПроизведения противоположных сторон четырехугольника равныОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаПроизведения противоположных сторон четырехугольника равныОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииПроизведения противоположных сторон четырехугольника равныОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаПроизведения противоположных сторон четырехугольника равныОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникПроизведения противоположных сторон четырехугольника равны

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Произведения противоположных сторон четырехугольника равны
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Произведения противоположных сторон четырехугольника равны

Окружность, описанная около параллелограмма
Произведения противоположных сторон четырехугольника равныОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Произведения противоположных сторон четырехугольника равныОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Произведения противоположных сторон четырехугольника равныОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Произведения противоположных сторон четырехугольника равныОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Произведения противоположных сторон четырехугольника равны
Окружность, описанная около параллелограмма
Произведения противоположных сторон четырехугольника равны

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаПроизведения противоположных сторон четырехугольника равны

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииПроизведения противоположных сторон четырехугольника равны

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаПроизведения противоположных сторон четырехугольника равны

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникПроизведения противоположных сторон четырехугольника равны

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Произведения противоположных сторон четырехугольника равны

Произведения противоположных сторон четырехугольника равны

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Произведения противоположных сторон четырехугольника равны

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Произведения противоположных сторон четырехугольника равны

Докажем, что справедливо равенство:

Произведения противоположных сторон четырехугольника равны

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Произведения противоположных сторон четырехугольника равны

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Произведения противоположных сторон четырехугольника равны

откуда вытекает равенство:

Произведения противоположных сторон четырехугольника равны(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Видео:№698. Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиусСкачать

№698. Сумма двух противоположных сторон описанного четырехугольника равна 12 см, а радиус

Вписанная окружность

Окружность вписанная в многоугольник — это окружность, которая касается всех сторон многоугольника. Центр вписанной окружности лежит внутри многоугольника, в который она вписана. Описанный около окружности многоугольник — это многоугольник, в который вписана окружность. На рисунке 1 четырехугольник АВСD описан около окружности с центром О, а четырехугольник АЕКD не является описанным около этой окружности, так как сторона ЕК не касается окружности.

Произведения противоположных сторон четырехугольника равны

Теорема

В любой треугольник можно вписать окружность.

Доказательство

Дано: произвольный Произведения противоположных сторон четырехугольника равныАВС.

Доказать: в Произведения противоположных сторон четырехугольника равныАВС можно вписать окружность.

Доказательство:

1. Проведем биссектрисы углов А, В и С, которые пересекутся в точке О (следствие из свойства биссектрис). Из точки О проведем перпендикуляры ОК, ОL и ОМ соответственно к сторонам АВ, ВС и СА (Рис. 2).

Произведения противоположных сторон четырехугольника равны

2. Точка О равноудалена от сторон Произведения противоположных сторон четырехугольника равныАВС (свойство биссектрис), поэтому ОК = ОL = ОМ. Следовательно, окружность с центром О радиуса ОК проходит через точки К, L и М. Стороны Произведения противоположных сторон четырехугольника равныАВС касаются этой окружности в точках К, L, М, т.к. они перпендикулярны к радиусам ОК, ОL и ОМ. Значит, окружность с центром О радиуса ОК является вписанной в Произведения противоположных сторон четырехугольника равныАВС. Теорема доказана.

Замечание 1

В треугольник можно вписать только одну окружность.

Доказательство

Предположим, что в треугольник можно вписать две окружности. Тогда центр каждой окружности равноудален от сторон треугольника и, значит, совпадает с точкой О пересечения биссектрис треугольника, а радиус равен расстоянию от точки О до сторон треугольника. Следовательно, эти окружности совпадают, значит в треугольник можно вписать только одну окружность. Что и требовалось доказать.

Замечание 2

Площадь треугольника равна произведению его полупериметра на радиус вписанной в него окружности.

Доказательство

На рисунке 2 мы видим, что Произведения противоположных сторон четырехугольника равныАВС составлен из трех треугольников: АВО, ВСО и САО. Пусть АВ, ВС и АС основания треугольников АВО, ВСО и САО соответственно, тогда высотами данных треугольников окажутся отрезки ОК = ОL = ОМ = r ( r — радиус окружности с центром О). Следовательно, площади этих треугольников вычисляются по формулам: Произведения противоположных сторон четырехугольника равны. Тогда, по свойству площадей, площадь треугольника Произведения противоположных сторон четырехугольника равныАВС выражается формулой: Произведения противоположных сторон четырехугольника равны, где Произведения противоположных сторон четырехугольника равны— периметр Произведения противоположных сторон четырехугольника равныАВС. Что и требовалось доказать.

Замечание 3

Не во всякий четырехугольник можно вписать окружность.

Доказательство

Рассмотрим, например, прямоугольник, у которого смежные стороны не равны, т.е. прямоугольник, не являющийся квадратом. В такой прямоугольник можно «поместить» окружность, касающуюся трех его сторон (Рис.3), но нельзя «поместить» окружность так, чтобы она касалась всех четырех его сторон, т.к. диаметр окружности меньше большей стороны прямоугольника т.е. нельзя вписать окружность. Что и требовалось доказать.

Произведения противоположных сторон четырехугольника равны

Если же в четырехугольник можно вписать окружность, то его стороны обладают следующим замечательным свойством:

В любом описанном четырехугольнике суммы противоположных сторон равны.

Доказательство

Рассмотрим четырехугольник АВСD, описанный около окружности (Рис. 4).

Произведения противоположных сторон четырехугольника равны

На рисунке 4 одинаковыми буквами обозначены равные отрезки касательных, т.к. отрезки касательных к окружности, проведенные из одной точки, равны. Тогда АВ + СD = Произведения противоположных сторон четырехугольника равныи ВС + АD = Произведения противоположных сторон четырехугольника равны, следовательно, АВ + СD = ВС + АD.

Верно и обратное утверждение:

Если суммы противоположных сторон выпуклого четырехугольника равны, то в него можно вписать окружность.

Доказательство

Пусть в выпуклом четырехугольнике АВСD

АВ + СD = ВС + АD. (1)

Точка О пересечения биссектрис углов А и В равноудалена от сторон АD, АВ и ВС (свойство биссектрис), поэтому можно провести окружность с центром О, касающуюся указанных трех сторон (Рис. 5).

Произведения противоположных сторон четырехугольника равны

Докажем, что эта окружность касается также стороны СD и, значит, является вписанной в четырехугольник АВСD.

Предположим, что это не так. Тогда прямая СD либо не имеет общих точек с окружностью, либо является секущей. Рассмотрим первый случай (Рис. 6). Проведем касательную С1D1, параллельную стороне СD (С1 и D1 — точки пересечения касательной со сторонами ВС и АD).

Произведения противоположных сторон четырехугольника равны

Так как АВС1D1 — описанный четырехугольник, то по свойству его противоположных сторон

АВ + С1D1 = ВС1 + AD1. (2)

Но ВС1 = ВСС1С, АD1 = АDD1D, поэтому из равенства (2) получаем:

С1D1 + С1С + D1D = ВС + АDАВ.

Правая часть этого равенства в силу (1) равна СD. Следовательно, приходим к равенству

т.е. в четырехугольник С1СDD1 одна сторона равна сумме трех других сторон. Но этого не может быть, т.к. к аждая сторона четырёхугольника всегда меньше суммы трёх остальных сторон. Значит, наше предположение ошибочно. Аналогично можно доказать, что прямая CD не может быть секущей окружности. Следовательно, окружность касается стороны СD. Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Видео:№695. Сумма двух противоположных сторон описанного четырехугольника равна 15 см. НайдитеСкачать

№695. Сумма двух противоположных сторон описанного четырехугольника равна 15 см. Найдите

Многоугольник. Нахождение диагоналей вписанного четырехугольника. Теорема Птоломея.

Обозначим стороны вписанного четырехугольника ABCD через a, b, с, d и его диагонали через x и y .Проведем AK ^ BС и СL ^ AD.

Так как сумма противоположных углов вписанного четырехугольника равна 2d, то, если угол B острый, угол D должен быть тупым.

Произведения противоположных сторон четырехугольника равны

Поэтому из треугольников ABС и ADС можем написать:

x 2 = a 2 + b 2 – 2b . BK [1];

x 2 = с 2 + d 2 + 2d . DL [2].

Прямоугольные треугольники ABK и СDL подобны, т.к. они содержат по равному острому углу (углы B и СDL равны, потому что каждый из них служит дополнением до 2d к углу ADС).

Из их подобия выводим:

откуда BK . с = DL . a [3].

Таким образом, мы получим три уравнения с тремя неизвестными x, BK и DL.

Чтобы исключить BK и DL , уравняем в первых двух уравнениях последние члены, для чего умножим уравнение [1] на сd , а уравнение [2] на ab .

Сложив затем результаты и, приняв во внимание уравнение [3], найдем:

(ab + сd)x 2 = a 2 сd + b 2 сd + с 2 ab + d 2 ab =aс(ad + bс) + bd(bс+ad)=(aс + bd)(ad+bс),

Произведения противоположных сторон четырехугольника равны.

Заметим, что в числителе подкоренной величины первый множитель — сумма произведений противоположных сторон, а второй — сумма произведений сторон, сходящихся в концах определяемой диагонали, знаменатель же представляет сумму произведений сторон, сходящихся в концах другой диагонали.

После этого мы можем, по аналогии, написать следующую формулу для диагонали y:

Произведения противоположных сторон четырехугольника равны.

Следствие 1.

Произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон.

Действительно, перемножив выражения, выведенные для x и для y, получим:

Произведения противоположных сторон четырехугольника равны.

Это предложение известно под именем теоремы Птоломея.

Следствие 2.

Отношение диагоналей вписанного четырехугольника равно отношению суммы произведений сторон, сходящихся в концах первой диагонали, к сумме произведений сторон, сходящихся в концах второй диагонали.

Действительно, разделив те же два равенства, найдем:

Произведения противоположных сторон четырехугольника равны.

Эти два следствия удобны для запоминания. Из них можно обратно вывести формулы для x и y (перемножением или делением равенств, определяющих xy и x/y).

📸 Видео

№699. Сумма двух противоположных сторон описанного четырехугольника равна 10 см, а его площадьСкачать

№699. Сумма двух противоположных сторон описанного четырехугольника равна 10 см, а его площадь

Диагонали четырехугольника равны 4 и 5.Скачать

Диагонали четырехугольника равны 4 и 5.

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можноСкачать

Геометрия Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

6 Сумма длин двух противоположных сторон и сумма диагоналей выпуклого четырёхугольникаСкачать

6 Сумма длин двух противоположных сторон и сумма диагоналей выпуклого четырёхугольника

Геометрия 10 класс (Урок№2 - Четырехугольники.)Скачать

Геометрия 10 класс (Урок№2 - Четырехугольники.)

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

вписанный и описанный четырехугольникСкачать

вписанный и описанный четырехугольник

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольника

11 класс, 44 урок, Описанный четырехугольникСкачать

11 класс, 44 урок, Описанный четырехугольник

8 класс, 4 урок, ПараллелограммСкачать

8 класс, 4 урок, Параллелограмм

#58. Олимпиадная задача о четырехугольникеСкачать

#58. Олимпиадная задача о четырехугольнике

Задание 3 ЕГЭ по математике. Урок 45Скачать

Задание 3 ЕГЭ по математике. Урок 45

Если в четырёхугольник можно вписать окружностьСкачать

Если в четырёхугольник можно вписать окружность

Задача 6 №27923 ЕГЭ по математике. Урок 140Скачать

Задача 6 №27923 ЕГЭ по математике. Урок 140

Четырехугольники на ЕГЭ - bezbotvyСкачать

Четырехугольники на ЕГЭ - bezbotvy
Поделиться или сохранить к себе: