- теория по математике 📈 планиметрия
- Выпуклый четырехугольник
- Виды и свойства выпуклых четырехугольников
- Прямоугольник
- Квадрат
- Параллелограмм
- Трапеция
- Виды трапеций
- Средняя линия трапеции
- Правильный четырехугольник
- Обозначения на рисунке для правильного четырехугольника
- Основные формулы для правильного четырехугольника
- Правильный четырехугольник (квадрат). Правильний чотирикутник (квадрат)
- Формулы для квадрата
- 💡 Видео
теория по математике 📈 планиметрия
Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.
Выпуклый четырехугольник
Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.
Определение
Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.
Видео:✓ Площадь через диагонали | Ботай со мной #122 | Борис ТрушинСкачать
Виды и свойства выпуклых четырехугольников
Сумма углов выпуклого четырехугольника равна 360 градусов.
Прямоугольник
Прямоугольник – это четырехугольник, у которого все углы прямые.
На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь
- Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
- Диагонали прямоугольника равны (АС=ВD).
- Диагонали пересекаются и точкой пересечения делятся пополам.
- Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
- Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:
S=ab, где a и b соседние стороны прямоугольника.
Квадрат
Квадрат – это прямоугольник, у которого все стороны равны.
Свойства квадрата
- Диагонали квадрата равны (BD=AC).
- Диагонали квадрата пересекаются под углом 90 градусов.
- Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
- Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
- Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.
Параллелограмм
Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.
Ромб – это параллелограмм, у которого все стороны равны.
Трапеция
Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.
Виды трапеций
Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.
углы А и С равны по 90 градусов
Средняя линия трапеции
Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.
Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.
Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.
По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17
Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.
Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).
Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .
Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.
Для нахождения площади трапеции в справочном материале есть формула
S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63
pазбирался: Даниил Романович | обсудить разбор | оценить
Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.
Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.
Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .
Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:
с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88
pазбирался: Даниил Романович | обсудить разбор | оценить
Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8
Для выполнения данного задания надо подставить все известные данные в формулу:
12,8= d 1 × 16 × 2 5 . . 2 . .
В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .
Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2
Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4
pазбирался: Даниил Романович | обсудить разбор | оценить
На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.
При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.
Задание №1
Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.
Объекты | яблони | теплица | сарай | жилой дом |
Цифры |
Решение
Для решения 1 задачи работаем с текстом и планом одновременно:
при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.
Итак, получили следующее:
1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.
Заполняем нашу таблицу:
Объекты | яблони | теплица | сарай | жилой дом |
Цифры | 3 | 5 | 1 | 7 |
Записываем ответ: 3517
Задание №2
Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?
Решение
Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).
Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».
Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.
Задание №3
Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.
Решение
Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.
Задание №4
Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.
Решение
Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).
Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м
Задание №5
Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.
Номер магазина | Расход краски | Масса краски в одной банке | Стоимость одной банки краски | Стоимость доставки заказа |
1 | 0,25 кг/кв.м | 6 кг | 3000 руб. | 500 руб. |
2 | 0,4 кг/кв.м | 5 кг | 1900 руб. | 800 руб. |
Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?
Решение
Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:
1 магазин: 232х0,25=58 кг
2 магазин: 232х0,4=92,8 кг
Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:
1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)
2 магазин: 92,8:5=18,56; значит надо 19 банок.
Вычислим стоимость краски в каждом магазине плюс доставка:
1 магазин: 10х3000+500=30500 руб.
2 магазин: 19х1900+800=36900 руб.
Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Видео:Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать
Правильный четырехугольник
Правильный четырехугольник — это такой четырехугольник у которого все четыре стороны равны и его четыре угла равны. Правильный четырехугольник это квадрат.
Центр правильного четырехугольника — на рисунке точка O равноудалена от вершин.
Светлая линия обозначающая высоту треугольника AOB : h называется — апофемой.
Отрезки OA , OB — радиусы правильного четырехугольника.
Видео:как найти диагональ.Скачать
Обозначения на рисунке для правильного четырехугольника
n=4 | число сторон и вершин правильного четырехугольника, | шт |
---|---|---|
α | центральный угол правильного четырехугольника, | радианы, ° |
β | половина внутреннего угла правильного четырехугольника, | радианы, ° |
γ | внутренний угол правильного четырехугольника, | радианы, ° |
a | сторона правильного четырехугольника, | м |
R | радиусы правильного четырехугольника, | м |
p | полупериметр правильного четырехугольника, | м |
L | периметр правильного четырехугольника, | м |
h | апофемы правильного четырехугольника, | м |
Видео:Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.Скачать
Основные формулы для правильного четырехугольника
Периметр правильного четырехугольника
Полупериметр правильного четырехугольника
Центральный угол правильного четырехугольника в радианах
Центральный угол правильного четырехугольника в градусах
Половина внутреннего угла правильного четырехугольника в радианах
Половина внутреннего угла правильного четырехугольника в градусах
Внутренний угол правильного четырехугольника в радианах
Внутренний угол правильного четырехугольника в градусах
Площадь правильного четырехугольника
Или учитывая формулу Площади квадрата получим
Видео:Золотое сечение и правильный пятиугольникСкачать
Правильный четырехугольник (квадрат). Правильний чотирикутник (квадрат)
Квадрат имеет свойства и параллелограмма, и ромба, и прямоугольника.
Квадрат – это прямоугольник, у которого все стороны равны.
У квадрата все стороны равны, как у ромба, и все углы прямые, как у прямоугольника.
Правильный четырехугольник — это квадрат.
Свойства правильного четырехугольника (Квадрата)
1. Все стороны равны и попарно параллельны.
2. Все угля прямые.
3. Диагонали равны и точкой пересечения делятся пополам.
4. Диагонали взаимно перпендикулярны и являются биссектрисами углов.
5. Точка пересечения диагоналей является общей вершиной четырех треугольников, которые равны между собой.
Квадрат має властивості паралелограма, ромба, прямокутника.
Квадрат — це прямокутник, у якого всі сторони рівні.
У квадрата всі сторони рівні, як у ромба, і всі кути прямі, як у прямокутника.
Правильний чотирикутник — це квадрат.
Властивості правильного чотирикутника (Квадрата)
1. Всі сторони рівні і попарно паралельні.
2. Все вугілля прямі.
3. Діагоналі рівні і точкою перетину діляться навпіл.
4. Діагоналі взаємно перпендикулярні і є бісектрисами кутів.
5. Точка перетину діагоналей є спільною вершиною чотирьох трикутників, які рівні між собою.
Видео:Площадь четырёхугольника через диагоналиСкачать
Формулы для квадрата
Обозначения, использованные в формулах: a — длина стороны квадрата r — радиус вписанной в него окружности d — длина диагонали квадрата R — радиус описанной вокруг него окружности P — периметр квадрата S — площадь квадрата Радиус вписанной окружности для квадрата равен половине его стороны (Формула 1) Длина диагонали равна корню квадратному из двух, умноженному на длину стороны (Формула 2) Радиус описанной окружности равен половине диагонали и равен стороне квадрата, умноженной на корень из двух на два (Формула 3) Периметр квадрата равен стороне умноженной на четыре или четырем корням из двух, умноженных на радиус описанной окружности или восьми радиусам вписанной окружности (Формула 4) Площадь квадрата равна квадрату сторон или двум квадратам радиусов описанной окружности или четырем квадратам радиуса вписанной в него окружности (Формула 5) | Позначення, використані у формулах: а — довжина сторони квадрата r — радіус вписаного в нього кола d — довжина діагоналі квадрата R — радіус описаного довкола нього кола P — периметр квадрата S — площа квадрата Радіус вписаного кола для квадрата дорівнює половині його сторони (Формула 1) Довжина діагоналі дорівнює Корню квадратному з двох, помноженому на довжину сторони (Формула 2) Радіус описаного кола дорівнює половині діагоналі і дорівнює стороні квадрата, помноженій на корінь з двох на два (Формула 3) Периметр квадрата дорівнює стороні помноженоi на чотири або чотирьом корням з двох, помножених на радіус описаного кола або восьми радіусам вписаного кола (Формула 4) 💡 ВидеоВсе про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать Как найти диагональ... Диагональни топишСкачать Площадь четырёхугольника через диагоналиСкачать 32 Длина любой диагонали четырёхугольника меньше полупериметра (49)Скачать Длина окружности. Площадь круга - математика 6 классСкачать ОГЭ по математике. Площадь четырехугольника можно вычислить (вар. 4)Скачать Длина окружности. Математика 6 класс.Скачать №478. В выпуклом четырехугольнике диагонали взаимно перпендикулярны. Докажите, что площадьСкачать Диагонали четырехугольника равны 4 и 5.Скачать 23-04 геом 9 правильный четырехугольникСкачать 9 класс, 24 урок, Формулы для вычисления площади правильного многоугольника, его стороныСкачать Свойства правильного шестиугольника. Сравнение площадей. Разбор задачи из стереометрии.Скачать Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭСкачать Правильные треугольник, четырехугольник и шестиугольник (вывод основных формул)Скачать |