Поток вектора через замкнутый цилиндр

Поток вектора в цилиндре

Видео:Поток векторного поля через замкнутую поверхностьСкачать

Поток векторного поля через замкнутую поверхность

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Содержание:

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

По этой ссылке вы найдёте полный курс лекций по математике:

Укажем некоторые способы вычисления потока вектора через незамкнутые поверхности. 1. . Пусть поверхность 5 однозначно проектируется на область Dxy плоскости хОу. В этом случае поверхность S можно задать уравнением вида Орт п° нормали к поверхности S находится по формуле Если в формуле (1) берется знак« то угол 7 между осью Oz и нормалью острый; если же знак то угол 7 — тупой.

Так как элемент площади этой поверхности равен то вычисление потока П через выбранную сторону поверхности 5 сводится к вычи-слениюдвойного интеграла по формуле Символ Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность.

Теорема Гаусса—Остроградского означает, что при вычислении в подынтегральной функции надо вместо z всюду поставить f(x> у). Пример 1. Найти поток вектора через часть поверхности параболоида z = s2 + y2, отсеченной плоскостью z = 2. По отношению к области, ограниченной параболоидом, берется внешняя нормаль (рис. 15). Данная поверхность проектируется на круг плоскости хОу с центром в начале координат радиуса .

Находим орт п° нормали к параболоиду: Согласно условию задачи вектор п° образует с осью Oz тупой угол 7, поэтому перед дробью следует взять знак минус. Таким образом, Находим скалярное произведение , значит, Согласно формуле (3) Вводя полярные координаты где получаем Если поверхность 5 проектируется однозначно на область плоскости yOz, то ее можно задать уравнением х = г). В этом случае имеем Наконец, если поверхность S проектируется однозначно на область Dxz плоскости xOzy то ее можно задать уравнением и тогда Знак « + » перед дробью в формуле (10) означает, чтоугол /3 между осью Оу и вектором нормали п° — острый, а знак «-», что угол /3 — тупой.

Замечание. Для нахождения потока вектора через поверхность 5, заданную уравнением г = /(х,у), методом проектирования на координатную плоскость хОу, не обязательно находить орт п° нормали, а можно брать вектор Тогда формула (2) для вычисления потока П примет вид: Аналогичные формулы получаются для потоков через поверхности, задэнные уравнениями Пример 2. Вычислить поток вектора а = хг через внешнюю сторону параболоида ограниченного плоскостью.

Имеем Так как угол 7 — острый, следует выбрать знак « + ». Отсюда Искомый поток вычисляется так: Переходя к полярным координатам , получим Метод проектирования на все координатные плоскости. Пусть поверхность S однозначно проектируется на все три координатные плоскости. Обозначим через Dzy, Dxz, Dyz проекции 5 на плоскости хОу, xOz, yOz соответственно. В этом случае уравнение F у, z) = 0 поверхности S однозначно разрешимо относительно каждого из аргументов, т. е.

Возможно вам будут полезны данные страницы:

Тогда погок вектора к через поверхность S, единичный вектор нормали к которой равен можно записать так: Известно, что причем знак в каждой из формул (14) выбирается таким, каков знак на поверхности S. Подставляя соотношения (12) и (14) в формулу (13), получаем, что Пример 3. Вычислить поток векторного поля через треугольник, ограниченный плоскостями 4 Имеем так что Значит, перед всеми интегралами в формуле (15) следует взять знак « + ».

Полагая получим Вычислим первый интеграл в правой части формулы (16). Область Dvz —треугольник ВОС в плоскости yOz, уравнение стороны . Имеем Аналогично получим . Значит, искомый поток равен 3. Метод введения криволинейных координат на поверхности. Если поверхность 5 является частью кругового цилиндра или сферы, при вычислении потока удобно, не применяя проектирования на координатные плоскости, ввести на поверхности криволинейные координаты. А.

Поверхность 5 является частью кругового цилиндра ограниченного поверхностями будем иметь Элемент площади поверхности выражается так: и поток вектора а через внешнюю сторону поверхности 5 вычисляется по формуле: где 4. Найти поток вектора через внешнюю сторону поверхности цилиндра ограниченной плоскостями Так как то скалярное произведение (а, п°) на цилиндре равно: Тогда по формуле (18) получим В.

Поверхность 5 является частью сфсры офаничснной коническими поверхностями, уравнения которых в сферических координатах имеют вид и полуплоскостями.

Точки данной сферы описываются соотношениями где Поэтому элемент площади В этом случае поток векторного поля а через внешнюю часть поверхности 5 вычисляется по формуле где Пример 5. Найти поток вектора через внешнюю часть сферы Положим Тогда скалярное произведение выразится так: По формуле (21) получим.

Замечание:

Здесь мы воспользовались формулой Поток вектора через замкнутую поверхность. Теорема Гаусса—Остроградского Теорема 4.

Если в некоторой области G пространства R3 координаты вектора непрерывны и имеют непрерывные частные производные , то поток вектора а через любую замкнутую кусочно-гладкую поверхность S, лежащую в области G, равен тройному интегралу от дх ду dz по области V, ограниченной поверхностью S: Здесь — орт внешней нормали к поверхности, а символ означает поток через замкнутую поверхность 5. Эта формула называется формулой Гаусса—Остроградского.

Рассмотрим сначала векгор а, имеющий только одну компоненту а = R(x, у, z)k, и предположим, что гладкая поверхность 5 пересекается каждой прямой, параллельной оси Oz, не более чем в двух точках. Тогда поверхность 5 разбивается на две части 5| и 52, однозначно проектирующиеся на некоторую область D плоскости хОу (рис.21). Внешняя нормаль к поверхности 52 образует острый угол 7 с осью Oz, а внешняя нормаль к поверхности 51 образует тупой угол с осью Oz.

Поэтому cos так что на 52 имеем 7. В силу аддитивности потока имеем Пусть da — элемент площади на поверхности S. Тогда

элемент площади области D. Сведем интегралы по поверхности к двойным интегралам по области D плоскости хОу, на которую проектируются поверхности Si и S2. Пусть S2 описывается уравнением — уравнением z = z(x>y). Тогда Так как приращение непрерывно дифференцируемой фунмции можно представить как интеграл от ее производной то для функции R(x, у, z) будем иметь.

Пользуясь этим, получаем из формулы (3) Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса—Остроградского Если поверхность S содержит часть цилиндрической поверхности с образующими, параллельными оси Oz (рис. 22), то на этой части поверхности (Як, п°) = 0 и интеграл / da по ней равен нулю.

Поэтому формула (4) остается

справедливой и для поверхностей, содержащих указанные цилиндрические части. Формула (4) переносится и на случай, когда поверхность S пересекается вертикальной прямой более, чем в двух точках (рис. 23). Разрежем область V на части, поверхность каждой из которых пересекается вертикальной прямой не более чем в двух точках, и обозначим через Sp поверхность разреза.

Пусть S и S2 — те части поверхности 5, на которые она разбивается разрезом 5Р, a V и Vj — соответствующие части области V, ограниченные поверхностями . Здесь Sp означает, что вектор нормали к разрезу Sp направлен вверх (образует с осью Oz острый угол), a Sp — что этот вектор нормали направлен вниз (образует с осью Oz тупой угол). Имеем: Складывая полученные равенства и пользуясь аддитивностью потока и тройною интеграла, получим (интегралы по разрезу взаимно уничтожаются).

Рассмотрим, наконец, вектор Для каждой компоненты Лк мы можем написать формулу, аналогичную формуле (4) (все компоненты равноправны). Получим Складывая эти равенства и пользуясь линейностью потока и тройного интеграла, получаем формулу Гаусса—Остро градского Пример 1. Вычислить поток век-гора через замкнутую поверхность по определению, 2) по формуле Остроградского. 4 1)

Поток вектора а равен сумме на поверхности Si), на поверхности S2 К так как Перейдем на цилиндре к криволинейным координатам Тогда 2) По формуле Гаусса—Остроградского имеем Пример 2. Вычислить поток радиус-вектора через сферу радиуса R с центром 8 начале координат: 1) по определению; 2) по формуле Остроградского. Так как для сферы и поэтому 2) Сначала находим Отсюда Пример 3.

Вычислить поток вектора через замкнугую поверхность S, заданную условиями: 1) по определению; 2) по формуле Острогрздя ого (рис.25). Имеем Значит, Поэтому Итак, Имеем Поэтому Переходя к цилиндрическим координатам и замечая,на поверхности 5, имеем Замечание . При вычислении потока через незамкнутую поверхность часто бывает удобно подходящим образом дополнить седо замкнутой и воспользоваться формулой Гаусса—Ос гроградского.

Пример 4:

Вычислить поток вектора Заданная поверхность S есть конус с осыо Оу (рис.26). Замкнем этот конус куском £ плоскости у — I. Тогда, обозначая через П| искомый поток, а через Н2 поток по поверхности будем иметь где V — объем конуса, ограниченного поверхностями S Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса—Остроградского Так как на поверхности Е выполняется равенство у = 1. Следовательно, ITj

Присылайте задания в любое время дня и ночи в ➔ Поток вектора через замкнутый цилиндрПоток вектора через замкнутый цилиндр

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Демидович №4442: поток вектора через цилиндрСкачать

Демидович №4442: поток вектора через цилиндр

Поток вектора в цилиндре

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Вычисление потока векторного поля на поверхности

Задача. Найти поток векторного поля

через часть цилиндрической поверхности

расположенной между плоскостями

Решение:

Поток находится по формуле:

Найдем нормальный вектор (bar ) из уравнения (x^2+y^2=a^2):

Скалярное произведение векторов:

Поскольку нам необходимо найти поток через цилиндрическую поверхность, то введем в качестве криволинейных координат (varphi) и (z).

Тогда (x=acdot cos varphi,quad y=acdot sin varphi,quad z=z,quad dS=a,dvarphi ,dz.)

$$prod=int int_ a, dS = int int_ a^2,dvarphi ,dz=$$

Видео:Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля

Поток вектора в цилиндре

Экспериментально установленные закон Кулона и принцип суперпозиции позволяют полностью описать электростатическое поле заданной системы зарядов в вакууме. Однако, свойства электростатического поля можно выразить в другой, более общей форме, не прибегая к представлению о кулоновском поле точечного заряда.

Введем новую физическую величину, характеризующую электрическое поле – поток Φ вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка . Произведение модуля вектора Поток вектора через замкнутый цилиндрна площадь и на косинус угла α между вектором Поток вектора через замкнутый цилиндри нормалью Поток вектора через замкнутый цилиндрк площадке называется элементарным потоком вектора напряженности через площадку (рис. 1.3.1):

где – модуль нормальной составляющей поля Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр
Рисунок 1.3.1.

Рассмотрим теперь некоторую произвольную замкнутую поверхность . Если разбить эту поверхность на малые площадки Δ, определить элементарные потоки Δ поля Поток вектора через замкнутый цилиндрчерез эти малые площадки, а затем их просуммировать, то в результате мы получим поток вектора Поток вектора через замкнутый цилиндрчерез замкнутую поверхность (рис. 1.3.2):

Поток вектора через замкнутый цилиндр

В случае замкнутой поверхности всегда выбирается внешняя нормаль .

Поток вектора через замкнутый цилиндр
Рисунок 1.3.2.

Теорема Гаусса утверждает:

Поток вектора напряженности электростатического поля Поток вектора через замкнутый цилиндрчерез произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0.

Для доказательства рассмотрим сначала сферическую поверхность , в центре которой находится точечный заряд . Электрическое поле в любой точке сферы перпендикулярно к ее поверхности и равно по модулю

Поток вектора через замкнутый цилиндр
Поток вектора через замкнутый цилиндр

где – радиус сферы. Поток через сферическую поверхность будет равен произведению на площадь сферы 4π. Следовательно, Поток вектора через замкнутый цилиндр

Окружим теперь точечный заряд произвольной замкнутой поверхностью и рассмотрим вспомогательную сферу радиуса (рис. 1.3.3).

Поток вектора через замкнутый цилиндр
Рисунок 1.3.3.

Рассмотрим конус с малым телесным углом при вершине. Этот конус выделит на сфере малую площадку , а на поверхности – площадку . Элементарные потоки и Δ через эти площадки одинаковы. Действительно,

Здесь Δ – площадка, выделяемая конусом с телесным углом ΔΩ на поверхности сферы радиуса .

Так как Поток вектора через замкнутый цилиндра Поток вектора через замкнутый цилиндрследовательно Поток вектора через замкнутый цилиндрОтсюда следует, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку 0 через поверхность вспомогательной сферы:

Поток вектора через замкнутый цилиндр

Аналогичным образом можно показать, что, если замкнутая поверхность не охватывает точечного заряда , то поток = 0. Такой случай изображен на рис. 1.3.2. Все силовые линии электрического поля точечного заряда пронизывают замкнутую поверхность насквозь. Внутри поверхности зарядов нет, поэтому в этой области силовые линии не обрываются и не зарождаются.

Обобщение теоремы Гаусса на случай произвольного распределения зарядов вытекает из принципа суперпозиции. Поле любого распределения зарядов можно представить как векторную сумму электрических полей Поток вектора через замкнутый цилиндрточечных зарядов. Поток системы зарядов через произвольную замкнутую поверхность будет складываться из потоков электрических полей отдельных зарядов. Если заряд оказался внутри поверхности , то он дает вклад в поток, равный Поток вектора через замкнутый цилиндресли же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю.

Таким образом, теорема Гаусса доказана.

Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Но если принять утверждение, содержащееся в этой теореме, за первоначальную аксиому, то ее следствием окажется закон Кулона. Поэтому теорему Гаусса иногда называют альтернативной формулировкой закона Кулона.

Используя теорему Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.

Примером может служить задача о вычислении поля тонкостенного полого однородно заряженного длинного цилиндра радиуса . Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Поэтому для применения теоремы Гаусса целесообразно выбрать замкнутую поверхность в виде соосного цилиндра некоторого радиуса и длины , закрытого с обоих торцов (рис. 1.3.4).

Поток вектора через замкнутый цилиндр
Рисунок 1.3.4.

При весь поток вектора напряженности будет проходить через боковую поверхность цилиндра, площадь которой равна , так как поток через оба основания равен нулю. Применение теоремы Гаусса дает:

Поток вектора через замкнутый цилиндр

где τ – заряд единицы длины цилиндра. Отсюда

Этот результат не зависит от радиуса заряженного цилиндра, поэтому он применим и к полю длинной однородно заряженной нити.

Для определения напряженности поля внутри заряженного цилиндра нужно построить замкнутую поверхность для случая . В силу симметрии задачи поток вектора напряженности через боковую поверхность гауссова цилиндра должен быть и в этом случае равен . Согласно теореме Гаусса, этот поток пропорционален заряду, оказавшемуся внутри замкнутой поверхности. Этот заряд равен нулю. Отсюда следует, что электрическое поле внутри однородно заряженного длинного полого цилиндра равно нулю.

Аналогичным образом можно применить теорему Гаусса для определения электрического поля в ряде других случаев, когда распределение зарядов обладает какой-либо симметрией, например, симметрией относительно центра, плоскости или оси. В каждом из таких случаев нужно выбирать замкнутую гауссову поверхность целесообразной формы. Например, в случае центральной симметрии гауссову поверхность удобно выбирать в виде сферы с центром в точке симметрии. При осевой симметрии замкнутую поверхность нужно выбирать в виде соосного цилиндра, замкнутого с обоих торцов (как в рассмотренном выше примере). Если распределение зарядов не обладает какой-либо симметрией и общую структуру электрического поля угадать невозможно, применение теоремы Гаусса не может упростить задачу определения напряженности поля.

Рассмотрим еще один пример симметричного распределения зарядов – определение поля равномерно заряженной плоскости (рис. 1.3.5).

Поток вектора через замкнутый цилиндр
Поток вектора через замкнутый цилиндр
Рисунок 1.3.5.

В этом случае гауссову поверхность целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:

где σ – поверхностная плотность заряда , т. е. заряд, приходящийся на единицу площади.

Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки.

Видео:Поток через замкнутую поверхность. Формула Остроградского-ГауссаСкачать

Поток через замкнутую поверхность. Формула Остроградского-Гаусса

Поток вектора через замкнутый цилиндр

Видео:Непосредственное вычисление потокаСкачать

Непосредственное вычисление потока

Вычисление потока векторного поля на поверхности

Задача. Найти поток векторного поля

через часть цилиндрической поверхности

расположенной между плоскостями

Решение:

Поток находится по формуле:

Найдем нормальный вектор (bar) из уравнения (x^2+y^2=a^2):

Скалярное произведение векторов:

Поскольку нам необходимо найти поток через цилиндрическую поверхность, то введем в качестве криволинейных координат (varphi) и (z).

Тогда (x=acdot cos varphi,quad y=acdot sin varphi,quad z=z,quad dS=a,dvarphi ,dz.)

$$prod=int int_ a, dS = int int_ a^2,dvarphi ,dz=$$

Видео:Найти поток векторного поля через замкнутую поверхность S (нормаль внешняя).Скачать

Найти поток векторного поля через замкнутую поверхность S (нормаль внешняя).

Поток векторного поля: теория и примеры

Видео:Демидович №4441б: поток радиус-вектора через замкнутую поверхностьСкачать

Демидович №4441б: поток радиус-вектора через замкнутую поверхность

Понятие потока векторного поля и его вычисление как поверхностного интеграла

Своим названием поток векторного поля обязан задачам гидродинамики о потоке жидкости. Поток векторного поля может быть вычислен в виде поверхностного интеграла, который выражает общее количество жидкости, протекающей в единицу времени через некоторую поверхность в направлении вектора скорости течения жидкости в данной точке. Понятие потока векторного поля обобщается также на магнетический поток, поток электричества, поток тепла через заданную поверхность и другие. Поток векторного поля может быть вычислен в виде поверхностного интеграла как первого, так и второго рода и далее мы дадим его вывод через эти интегралы.

Пусть в некоторой области пространства задано векторное поле

Поток вектора через замкнутый цилиндр

и поверхность σ, в каждой точке M которой определён единичный вектор нормали Поток вектора через замкнутый цилиндр. Пусть также направляющие косинусы этого вектора — непрерывные функции координат x, y, z точки M.

Определение потока векторного поля. Потоком W поля вектора Поток вектора через замкнутый цилиндрчерез поверхность σ называется поверхностный интеграл

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр.

Обозначим как a n проекцию вектора Поток вектора через замкнутый цилиндрна на единичный вектор Поток вектора через замкнутый цилиндр. Тогда поток можем записать как поверхностный интеграл первого рода

Поток вектора через замкнутый цилиндр.

Поток вектора через замкнутый цилиндр.

Поток вектора через замкнутый цилиндр

поток векторного поля можно вычислить и как поверхностный интеграл второго рода

Поток вектора через замкнутый цилиндр.

Видео:Еще раз про поток и циркуляциюСкачать

Еще раз про поток и циркуляцию

Направление и интенсивность потока векторного поля

Поток векторного поля зависит от местоположения поверхности σ. Если поверхность размещена так, что во всех её точках вектор поля Поток вектора через замкнутый цилиндробразует с вектором нормали поверхности острый угол, то проекции вектора a n положительны и, таким образом поток W также положителен (рисунок ниже). Если же поверхность размещена так, что во всех её точках вектор Поток вектора через замкнутый цилиндробразует с вектором нормали поверхности тупой угол, то поток W отрицателен.

Поток вектора через замкнутый цилиндр

Через каждую точку поверхности проходит одна векторная линия, поэтому поверхность σ пересекает бесконечное множество векторных линий. Однако условно можно принять, что поверхность σ пересекает некоторое конечное число векторных линий. Поэтому можно считать, что поток векторного поля — это число векторных линий, пересекающих поверхность σ. Чем интенсивнее поток векторного поля, тем более плотно расположены векторные линии и в результате получается бОльший поток жидкости.

Если поток векторного поля — поле скорости Поток вектора через замкнутый цилиндрчастиц текущей жидкости через поверхность σ, то поверхностный интеграл Поток вектора через замкнутый цилиндрравен количеству жидкости, протекающей в единицу времени через поверхность σ. Если рассматривать магнетическое поле, которое характеризуется вектором магнетической индукции Поток вектора через замкнутый цилиндр, то поверхностный интеграл Поток вектора через замкнутый цилиндрназывается магнетическим потоком через поверхность σ и равен общему количеству линий магнетической индукции, пересекающих поверхность σ. В случае электростатического поля интеграл Поток вектора через замкнутый цилиндрвыражает число линий электрической силы, пересекающих поверхность σ. Этот интеграл называется потоком вектора интенсивности электростатического поля Поток вектора через замкнутый цилиндрчерез поверхнсть σ. В теории теплопроводности рассматривается стационарный поток тепла через поверхность σ. Если k — коэффициент теплопроводности, а u(M) — температура в данной области, то поток тепла, протекающего через поверхность σ в единицу времени, определяет интеграл Поток вектора через замкнутый цилиндр.

Видео:Формула Остроградского-ГауссаСкачать

Формула Остроградского-Гаусса

Вычисление потока векторного поля: примеры

Пример 1. Вычислить поток векторного поля Поток вектора через замкнутый цилиндрчерез верхнюю сторону треугольника, образованного пересечением плоскости Поток вектора через замкнутый цилиндрс координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

1) Поверхностью σ является треугольник ABC , а её проекцией на ось xOy — треугольник AOB .

Поток вектора через замкнутый цилиндр

Координатами вектора нормали данной поверхности являются коэффициенты при переменных в уравнении плоскости:

Поток вектора через замкнутый цилиндр.

Длина вектора нормали:

Поток вектора через замкнутый цилиндр.

Единичный вектор нормали:

Поток вектора через замкнутый цилиндр.

Поток вектора через замкнутый цилиндр

Из выражения единичного вектора нормали следует, что направляющий косинус Поток вектора через замкнутый цилиндр. Тогда Поток вектора через замкнутый цилиндр.

Теперь можем выразить поток векторного поля в виде поверхностного интеграла первого рода и начать решать его:

Поток вектора через замкнутый цилиндр

Выразим переменную «зет»:

Поток вектора через замкнутый цилиндр

Продолжаем вычислять интеграл и, таким образом, поток векторного поля:

Поток вектора через замкнутый цилиндр

Получили ответ: поток векторного поля равен 64.

2) Выражая поток векторного поля через поверхностный интеграл второго рода, получаем

Поток вектора через замкнутый цилиндр.

Представим этот интеграл в виде суммы трёх интегралов и каждый вычислим отдельно. Учитывая, что проекция поверхности на ось yOz является треугольник OCB , который ограничивают прямые y = 0 , z = 0 , y + 3z = 6 или y = 6 − 3z и в точках поверхности 2x = 6 − y − 3 , получаем первый интеграл и вычисляем его:

Поток вектора через замкнутый цилиндр

Проекцией поверхности на ось xOz является треугольник OAC , который ограничен прямыми x = 0 , z = 0 , 2x + 3z = 6 или Поток вектора через замкнутый цилиндр. По этим данным получаем второй интеграл, который сразу решаем:

Поток вектора через замкнутый цилиндр

Проекцией поверхности на ось xOy является треугольник OAB , который ограничен прямыми x = 0 , y = 0 , 2x + y = 6 . Получаем третий интеграл и решаем его:

Поток вектора через замкнутый цилиндр

Осталось только сложить все три интеграла:

Поток вектора через замкнутый цилиндр.

Получили ответ: поток векторного поля равен 64. Как видим, он совпадает с ответом, полученным в первом случае.

Пример 2. Вычислить поток векторного поля Поток вектора через замкнутый цилиндрчерез верхнюю сторону треугольника, образованного пересечением плоскости Поток вектора через замкнутый цилиндрс координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

Решение. Данная поверхность представляет собой треугольник ABC , изображённый на рисунке ниже.

Поток вектора через замкнутый цилиндр

1) Коэффициенты при x , y и z из уравнения плоскости являются координатами вектора нормали плоскости, которые нужно взять с противоположным знаком (так как вектор нормали верхней стороны треугольника образует с осью Oz острый угол, так что третья координата вектора нормали плоскости должна быть положительной). Таким образом, вектор нормали запишется в координатах так:

Поток вектора через замкнутый цилиндр.

Длина этого вектора:

Поток вектора через замкнутый цилиндр,

единичный вектор нормали (орт):

Поток вектора через замкнутый цилиндр.

Скалярное произведение векторного поля и единичного нормального вектора:

Поток вектора через замкнутый цилиндр

Поток векторного поля, таким образом, представим в виде поверхностного интеграла первого рода

Поток вектора через замкнутый цилиндр.

Выразим «зет» и продифференцируем то, что уже можно продифференцировать:

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

2) Представим поток векторного поля в виде поверхностного интеграла второго рода:

Поток вектора через замкнутый цилиндр.

Первый и второй интегралы берём со знаком «минус», так как вектор нормали поверхности образует с осями Ox и Oy тупой угол.

Вычисляем первый интеграл:

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Вычисляем второй интеграл:

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Вычисляем третий интеграл:

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Складываем три интеграла и получаем тот же самый результат:

Поток вектора через замкнутый цилиндр.

Пример 3. Вычислить поток векторного поля Поток вектора через замкнутый цилиндрчерез внешнюю сторону параболоида Поток вектора через замкнутый цилиндрв первом октанте, отсечённую плоскостью z = 9 .

Поток вектора через замкнутый цилиндр

Поток векторного поля представим в виде поверхностного интеграла второго рода:

Поток вектора через замкнутый цилиндр

Второй интеграл берём со знаком минус, так как нормальный вектор поверхности образует с осью Oz тупой угол. Вычисляем первый интеграл:

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

Вычисляем второй интеграл:

Поток вектора через замкнутый цилиндр

Поток вектора через замкнутый цилиндр

В сумме получаем искомый поток векторного поля:

Поток вектора через замкнутый цилиндр.

📽️ Видео

Шпилечное соединение (new version)Скачать

Шпилечное соединение (new version)

Билет №02 "Теорема Гаусса"Скачать

Билет №02 "Теорема Гаусса"

Работа сил электрического поля. 10 класс.Скачать

Работа сил электрического поля. 10 класс.

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"Скачать

Билет №16 "Теорема о циркуляции и теорема Гаусса для магнитного поля"

Циркуляция векторного поляСкачать

Циркуляция векторного поля

Физика. 10 класс. Поток вектора напряженности электрического поля. Теорема Гаусса /18.01.2021/Скачать

Физика. 10 класс. Поток вектора напряженности электрического поля. Теорема Гаусса /18.01.2021/

Методы вычисления циркуляции векторного поляСкачать

Методы вычисления циркуляции векторного поля

Клёнов Н.В.-Физика наноструктур, атомная и молекулярная физика- 14. Доклад Дмитровского М.Ю.Скачать

Клёнов Н.В.-Физика наноструктур, атомная и молекулярная физика- 14. Доклад Дмитровского М.Ю.

Теорема Гаусса для расчета полей цилиндра (нити) и плоскостиСкачать

Теорема Гаусса для расчета полей цилиндра (нити) и плоскости

Непосредственное вычисление циркуляцииСкачать

Непосредственное вычисление циркуляции
Поделиться или сохранить к себе:
Поток вектора через замкнутый цилиндр