Пример №1 . Даны векторы ε1(2;1;3), ε2(3;-2;1), ε3(1;-3;-4), X(7;0;7). Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора X в этом базисе.
Решение. Данная задача состоит из двух частей. Сначала необходимо проверить, образуют ли векторы базис. Векторы образуют базис, если определитель, составленный из координат этих векторов, отличен от нуля, в противном случае вектора не являются базисными и вектор X нельзя разложить по данному базису.
Вычислим определитель матрицы:
E = |
|
∆ = 2*((-2)*(-4) — (-3)*1) — 3*(1*(-4) — (-3)*3) + 1*(1*1 — (-2)*3) = 14
Определитель матрицы равен ∆ =14
Так как определитель отличен от нуля, то векторы образуют базис, следовательно, вектор X можно разложить по данному базису. Т.е. существуют такие числа α1α2α3, что имеет место равенство:
X = ⓫ε1 + ⓬ε2 + ⓭ε3
Запишем данное равенство в координатной форме:
(7;0;7) = α(2;1;3) + α(3;-2;1) + α(1;-3;-4)
Используя свойства векторов, получим следующее равенство:
(7;0;7) = (2α1;1α1;3α1😉 + (3α2;-2α2;1α2😉 + (1α3;-3α3;-4α3😉
(7;0;7) = (2α1 + 3α2 + 1α3;1α1 -2α2 -3α3;3α1 + 1α2 -4α3)
По свойству равенства векторов имеем:
2α1 + 3α2 + 1α3 = 7
1α1 -2α2 -3α3 = 0
3α1 + 1α2 -4α3 = 7
Решаем полученную систему уравнений методом Гаусса или методом Крамера.
Ответ:
X = |
|
X = 2ε1 + ε2
В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.
Пример №2 . В системе векторов a1, a2, a3, a4 найти любую подсистему векторов, которые образуют базис, разложить векторы по базису, перейти к другому базису, найти коэффициенты разложения векторов во втором базисе; в обоих случаях определить обратные матрицы, соответствующие векторам базиса. Правильность вычисления в каждом случае проверить с помощью умножения вектора слева на матрицу, обратную матрице вектора базиса.
a1=(1;5;3), a2=(2;1;-1), a3=(4;2;1), a4=(17;13;4).
- Векторное произведение векторов онлайн
- Предупреждение
- Векторное произведение векторов
- Геометрические свойства векторного произведения векторов
- Векторное произведение векторов в декартовых координатах
- Векторное произведение векторов на примерах
- 5.1.6. Примеры решения задач по теме «Линейные операторы и квадратичные формы»
- 📹 Видео
Видео:Координаты вектора. 9 класс.Скачать
Векторное произведение векторов онлайн
Данный онлайн калькулятор вычисляет векторное произведение векторов. Дается подробное решение. Для вычисления векторного произведения векторов введите координаты векторов в ячейки и нажимайте на кнопку «Вычислить.»
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Векторное произведение векторов
Прежде, чем перейти к определению векторного произведения векторов, рассмотрим понятия упорядоченная тройка векторов, левая тройка векторов, правая тройка векторов.
Определение 1. Три вектора называются упорядоченой тройкой (или тройкой ), если указано, какой из этих векторов первый, какой второй и какой третьий.
Запись cba — означает — первым является вектор c, вторым является вектор b и третьим является вектор a.
Определение 2. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, эти векторы располагаются так, как расположены соответственно большой, несогнутый указательный и средний пальцы правой(левой) руки.
Определение 2 можно формулировать и по другому.
Определение 2′. Тройка некомпланарных векторов abc называется правой ( левой ), если при приведении к общему началу, вектор c располагается по ту сторону от плоскости, определяемой векторами a и b, откуда кратчайший поворот от a к b совершается против часовой стрелки (по часовой стрелке).
Тройка векторов abc, изображенная на рис. 1, является правой, а тройка abc изображенная на рис. 2, является левой.
Если две тройки векторов являются правыми либо левыми, то говорят, что они одной ориентации. В противном случае говорят, что они противоположной ориентации.
Определение 3. Декартовая или афинная система координат называется правой ( левой ), если три базисных вектора образуют правую (левую) тройку.
Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.
Определение 4. Векторным произведением вектора a на вектор b называется вектор с, обозначаемый символом c=[ab] (или c=[a,b], или c=a×b) и удовлетворяющий следующим трем требованиям:
- длина вектора с равна произведению длин векторов a и b на синус угла φ между ними:
|c|=|[ab]|=|a||b|sinφ; (1) - вектор с ортогонален к каждому из векторов a и b;
- вектор c направлен так, что тройка abc является правой.
Векторное произведение векторов обладает следующими свойствами:
- [ab]=−[ba] ( антиперестановочность сомножителей);
- [(λa)b]=λ[ab] ( сочетательность относительно числового множителя);
- [(a+b)c]=[ac]+[bc] ( распределительность относительно суммы векторов);
- [aa]=0 для любого вектора a.
Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать
Геометрические свойства векторного произведения векторов
Теорема 1. Для коллинеарности двух векторов необходимо и достаточно равенство нулю их векторного произведения.
Доказательство. Необходимость. Пусть векторы a и b коллинеарны. Тогда угол между ними 0 или 180° и sinφ=sin180=sin 0=0. Следовательно, учитывая выражение (1), длина вектора c равна нулю. Тогда c нулевой вектор.
Достаточность. Пусть векторное произведение векторов a и b навно нулю: [ab]=0. Докажем, что векторы a и b коллинеарны. Если хотя бы один из векторов a и b нулевой, то эти векторы коллинеарны (т.к. нулевой вектор имеет неопределенное направление и его можно считать коллинеарным любому вектору).
Если же оба вектора a и b ненулевые, то |a|>0, |b|>0. Тогда из [ab]=0 и из (1) вытекает, что sinφ=0. Следовательно векторы a и b коллинеарны.
Теорема 2. Длина (модуль) векторного произведения [ab] равняется площади S параллелограмма, построенного на приведенных к общему началу векторах a и b.
Доказательство. Как известно, площадь параллелограмма равна произведению смежных сторон этого параллелограмма на синус угла между ними. Следовательно:
S=|[ab]|=|a||b|sinφ. | (2) |
Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать
Векторное произведение векторов в декартовых координатах
Теорема 3. Пусть два вектора a и b определены своими декартовыми прямоугольными координатами
a=<x1, y1, z1>, b=<x2, y2, z2>. |
Тогда векторное произведение этих векторов имеет вид:
[ab]=<y1z2—y2z1, z1x2−z2x1, x1y2−x2y1>. | (3) |
Для запоминания формулы (3) удобно представить векторное произведение векторов в виде определителя:
Раскрывая определитель по элементам первой строки мы получим разложение вектора a×b по базису i, j, k, которое эквивалентно формуле (3).
Доказательство теоремы 3. Составим все возможные пары из базисных векторов i, j, k и посчитаем их векторное произведение. Надо учитывать, что базисные векторы взаимно ортогональны, образуют правую тройку и имеют единичную длину (иными словами можно предполагать, что i=, j=, k=). Тогда имеем:
(4) |
Из последнего равенства и соотношений (4), получим:
которая эквивалентна равенству (3).
Видео:Координаты в новом базисеСкачать
Векторное произведение векторов на примерах
Пример 1. Найти векторное произведение векторов [ab], где
, . |
Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:
. |
Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:
. |
Таким образом, результатом векторного произведения векторов a и b будет вектор:
. |
Пример 2. Найти векторное произведение векторов [ab], где вектор a представлен двумя точками. Начальная точка вектора a: , конечная точка вектора a: , вектор b имеет вид .
Р е ш е н и е. Переместим первый вектор на начало координат. Для этого вычтем из соответствующих координат конечной точки координаты начальной точки:
. |
Составим 3×3 матрицу, первая строка которой базисные векторы i, j, k, а остальные строки заполнены элементами векторов a и b:
. |
Вычислим определитель этой матрицы, разложив ее по первой строке. Результатом этих вычислений получим векторное произведение векторов a и b:
. |
Таким образом, результатом векторного произведения векторов a и b будет вектор:
Видео:Найдите разложение вектора по векторам (базису)Скачать
5.1.6. Примеры решения задач по теме «Линейные операторы и квадратичные формы»
Пусть Е1, Е2, Е3, Е4 – базис в векторном пространстве. Разложить вектор
Выпишите матрицу перехода от старого базиса к новому, столбцами которой являются координаты новых базисных векторов в старом базисе. Строки этой матрицы являются коэффициентами в формулах преобразования старых координат через новые.
Выпишем матрицу перехода от старого базиса к новому, столбцами которой являются координаты новых базисных векторов в старом базисе:
.
Строки этой матрицы являются коэффициентами в формулах преобразования старых координат через новые.
Координаты вектора Х в старом базисе: Х = (1; 2; -1; 3). Пусть в новом базисе он имеет координаты: X = (X, Y, Z, T). Тогда, используя матрицу Т, найдем связь между старыми и новыми координатами:
.
Следовательно, в новом базисе Х = (-1; 3; -4; 3).
Найти матрицу А’ оператора А:
Искомая матрица А’ = T-1 A T, где Т – матрица перехода из старого базиса к новому.
Искомая матрица А’ = T-1 A T, где Т – матрица перехода из старого базиса к новому. Составим матрицу Т :
.
.
.
Ответ: .
Найти собственные числа и собственные векторы линейного оператора, заданного матрицей
.
Для определения собственных чисел составьте характеристическое уравнение:
Координаты собственных векторов RI = (Xi, Yi) должны удовлетворять системе уравнений, коэффициенты которых получены из элементов строк определителя, стоящего в левой части характеристического уравнения, при подстановке LI.
Составим характеристическое уравнение:
Найдем собственные векторы:
1) для L = -2 координаты собственного вектора R1 = (X1, Y1) должны удовлетворять системе уравнений, коэффициенты которых получены из элементов строк определителя, стоящего в левой части характеристического уравнения, при подстановке L = -2:
Если Х1 = 1, то У1 = -1, и R1= (1; -1). Остальные собственные векторы коллинеарны вектору (1; -1), и общий вид собственного вектора, соответствующего L = -2: R1 = С1(1; -1), где С1 – произвольная постоянная.
2) для L = 6 координаты собственного вектора R2 (X2; Y2) удовлетворяют системе:
Пусть Х2 = 3, тогда У2 = 5, и R2 = (3; 5). Соответственно общий вид второго собственного вектора: R2 = С2(3; 5).
Ответ: собственные числа L1 = -2, L2 = 6; собственные векторы R1 = С1(1; -1),
В пространстве 3-мерных векторов задан оператор
Где I – базисный вектор декартовой системы координат.
Выяснить геометрический смысл этого оператора.
Множитель Xi – скалярное произведение, то есть число, поэтому вектор (Xi)I коллинеарен оси Ох.
Оператор А переводит произвольно направленный вектор Х в вектор
KI, коллинеарный оси Ох, поскольку первый множитель – скалярное произведение, то есть число. Из определения скалярного произведения следует, что
Следовательно, А – оператор проектирования на ось Ох.
Оператор осуществляет проектирование вектора Х на ось Ох;
Привести матрицу А линейного оператора к диагональному виду и найти соответствующий базис, если
Найдите собственные числа и собственные векторы матрицы линейного оператора, задайте базис из линейно независимых собственных векторов R1, R2, R3 , в котором матрица оператора примет диагональный вид, и составьте матрицу перехода к новому базису.
Найдем собственные векторы, соответствующие полученным собственным числам.
Подставим в строки определителя L = 2 и найдем связь между координатами собственного вектора R2 = (X2, Y2, Z2):
Та же зависимость получается для координат третьего собственного вектора R3 = (X3, Y3, Z3). Выберем значения двух координат каждого из этих векторов так, чтобы R2 и R3 были линейно независимы.
Пусть Х2 = 1, У2 = 0, тогда Z2 = -3, и R2 = (1; 0; -3).
Получен базис из линейно независимых собственных векторов R1, R2, R3 , в котором матрица оператора примет диагональный вид.
Составим матрицу перехода к новому базису:
Найдем матрицу, обратную к Т:
.
Тогда в базисе из собственных векторов матрица оператора
Ответ: в базисе (1; 1; 1), (1; 0; -3), (0; 1; 3) матрица оператора
Линейный оператор А задан в некотором базисе матрицей
Найти собственные числа и собственные векторы оператора А-1 – оператора, обратного к А.
Собственные числа обратного оператора являются обратными к собственным числам данного оператора, а их собственные векторы одинаковы.
Характеристическое уравнение для А:
Найдем матрицу обратного оператора:
.
Соответствующее характеристическое уравнение:
Составить матрицу квадратичной формы 3Х2 – 10Ху + 8У2 и найти ее собственные числа.
Матрица квадратичной формы А11Х2 + 2А12Ху + А22У2 является
Симметрической (Aij = Aji) и имеет вид:
В нашей задаче А11 = 3, А12 = -5, А22 = 8. Следовательно,
Составим характеристическое уравнение, корнями которого являются собственные числа:
Ответ: матрица квадратичной формы ,
Собственные числа
Найти базис, в котором квадратичная форма 2Х2 + 4Ху + 5У2 будет иметь канонический вид, и указать этот вид.
Канонический вид квадратичной формы:
1) во-первых, не содержит произведения Ху;
2) во-вторых, коэффициенты при Х2 и У2 равны собственным числам матрицы квадратичной формы.
Базис, в котором квадратичная форма имеет канонический вид, состоит из нормированных собственных векторов матрицы квадратичной формы.
Матрица квадратичной формы
Собственные числа: L1 = 1, L2 = 6.
Для L1 = 1 координаты вектора R1 = <X1, Y1> определяются уравнением
Х1 + 2У1 = 0, Х1 = -2У1. Если У1 = 1, то Х1 = -2, и R1 = C. Найдем значение С из условия, что вектор R1 нормирован, то есть его длина равна 1:
Итак, базис имеет вид:
И в этом базисе квадратичная форма примет вид: L1Х2 + L2У2, то есть Х2 + 6У2.
Ответ: в базисе квадратичная форма имеет канонический вид: Х2 + 6У2.
Указать преобразование координат, приводящее квадратичную форму
8Х2 – 12Ху + 17У2 к каноническому виду.
Матрица преобразования координат имеет вид:
Где R1 = (X1, Y1) и R2 = (X2, Y2) – нормированные собственные векторы.
Найдем базис из нормированных собственных векторов.
Составим матрицу перехода к новому базису, столбцами которой будут координаты новых базисных векторов R1, R2 в старом базисе:
Строки этой матрицы определяют коэффициенты уравнений, выражающих старые координаты через новые:
Где Х, У – координаты в старом базисе, а Х’, Y’ – в новом.
Таким образом, найдено искомое преобразование.
Ответ: .
Привести к каноническому виду квадратичную форму 5Х2 – 12Ху.
Матрица преобразования координат имеет вид:
Где R1 = (X1, Y1) и R2 = (X2, Y2) – нормированные собственные векторы. В новом базисе квадратичная форма имеет канонический вид, причем коэффициенты при Х2 и У2 совпадают с собственными числами матрицы квадратичной формы.
Матрица перехода к базису из собственных векторов:
Подставим найденные выражения в квадратичную форму:
Как и следовало ожидать, в новом базисе квадратичная форма имеет канонический вид, причем коэффициенты при Х2 и У2 совпадают с собственными числами матрицы квадратичной формы.
Найти преобразование координат, приводящее квадратичную форму
X2 + Y2 + 5Z2 – 6Xy + 2Xz – 2Yz к каноническому виду.
Матрица преобразования координат:
Для заданной квадратичной формы
Составим и решим характеристическое уравнение:
(Мы не останавливаемся подробно на способах решения уравнений высших порядков. В данном случае, например, один из корней был найден перебором делителей свободного члена, а затем левая часть разложена на множители.)
Найдем нормированные собственные векторы:
Матрица перехода к новому базису:
Задает преобразование координат:
Заметим, что в новых координатах квадратичная форма примет вид:
Где коэффициенты являются собственными числами, стоящими в той же последовательности, что и соответствующие собственные векторы в матрице Т.
Ответ:
📹 Видео
Разложение вектора по базису. 9 класс.Скачать
Векторы. Метод координат. Вебинар | МатематикаСкачать
Скалярное произведение векторов через координаты. 9 класс.Скачать
9 класс, 2 урок, Координаты вектораСкачать
18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
Координаты вектора в пространстве. 11 класс.Скачать
Нахождение координат вектора. Практическая часть. 9 класс.Скачать
9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторамСкачать
Координаты точки и координаты вектора 1.Скачать
Как разложить вектор по базису - bezbotvyСкачать
Векторы и действия над ними, проекция вектора на координатные оси. 9 класс.Скачать
Орт вектора. Нормировать вектор. Найти единичный векторСкачать
9 класс, 3 урок, Связь между координатами вектора и координатами его начала и концаСкачать
Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать