Найти базис собственных векторов

Собственные числа и собственные векторы линейного оператора

Определение . Ненулевой вектор x называется собственным вектором оператора A , если оператор A переводит x в коллинеарный ему вектор, то есть A· x = λ· x . Число λ называется собственным значением или собственным числом оператора A, соответствующим собственному вектору x .
Отметим некоторые свойства собственных чисел и собственных векторов.
1. Любая линейная комбинация собственных векторов x 1, x 2, . x m оператора A , отвечающих одному и тому же собственному числу λ, является собственным вектором с тем же собственным числом.
2. Собственные векторы x 1, x 2, . x m оператора A с попарно различными собственными числами λ1, λ2, …, λm линейно независимы.
3. Если собственные числа λ12= λm= λ, то собственному числу λ соответствует не более m линейно независимых собственных векторов.

Итак, если имеется n линейно независимых собственных векторов x 1, x 2, . x n, соответствующих различным собственным числам λ1, λ2, …, λn, то они линейно независимы, следовательно, их можно принять за базис пространства Rn. Найдем вид матрицы линейного оператора A в базисе из его собственных векторов, для чего подействуем оператором A на базисные векторы: Найти базис собственных векторовтогда Найти базис собственных векторов.
Таким образом, матрица линейного оператора A в базисе из его собственных векторов имеет диагональный вид, причем по диагонали стоят собственные числа оператора A.
Существует ли другой базис, в котором матрица имеет диагональный вид? Ответ на поставленный вопрос дает следующая теорема.

Теорема. Матрица линейного оператора A в базисе < ε i> (i = 1..n) имеет диагональный вид тогда и только тогда, когда все векторы базиса — собственные векторы оператора A.

Видео:Собственные векторы и собственные значения матрицыСкачать

Собственные векторы и собственные значения матрицы

Правило отыскания собственных чисел и собственных векторов

Система (1) имеет ненулевое решение, если ее определитель D равен нулю

Найти базис собственных векторов

Пример №1 . Линейный оператор A действует в R3 по закону A· x =(x1-3x2+4x3, 4x1-7x2+8x3, 6x1-7x2+7x3), где x1, x2, . xn — координаты вектора x в базисе e 1=(1,0,0), e 2=(0,1,0), e 3=(0,0,1). Найти собственные числа и собственные векторы этого оператора.
Решение. Строим матрицу этого оператора:
A· e 1=(1,4,6)
A· e 2=(-3,-7,-7)
A· e 3=(4,8,7)
Найти базис собственных векторов.
Составляем систему для определения координат собственных векторов:
(1-λ)x1-3x2+4x3=0
x1-(7+λ)x2+8x3=0
x1-7x2+(7-λ)x3=0
Составляем характеристическое уравнение и решаем его:

Найти базис собственных векторов

Пример №2 . Дана матрица Найти базис собственных векторов.
1. Доказать, что вектор x =(1,8,-1) является собственным вектором матрицы A. Найти собственное число, соответствующее этому собственному вектору.
2. Найти базис, в котором матрица A имеет диагональный вид.

Решение находим с помощью калькулятора.
1. Если A· x =λ· x , то x — собственный вектор

Найти базис собственных векторов

Найти базис собственных векторов

Найти базис собственных векторов

Определение . Симметрической матрицей называется квадратная матрица, в которой элементы, симметричные относительно главной диагонали, равны, то есть в которой ai k =ak i .

Замечания .

  1. Все собственные числа симметрической матрицы вещественны.
  2. Собственные векторы симметрической матрицы, соответствующие попарно различным собственным числам, ортогональны.

В качестве одного из многочисленных приложений изученного аппарата, рассмотрим задачу об определении вида кривой второго порядка.

Видео:Собственные значения и собственные векторы матрицы (4)Скачать

Собственные значения и собственные векторы матрицы (4)

Найти базис собственных векторов

Найдем такие вектора (называются собственными векторами) v
и такие числа — значения (называются собственными значениями) l
матрицы A, для v, l и A выполняется:
A*v = l*v.

Также вычисляется кратность собственных значений и находит характеристическое уравнение матрицы.

© Контрольная работа РУ — калькуляторы онлайн

Видео:Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

Где учитесь?

Для правильного составления решения, укажите:

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Алгоритм нахождения векторов жорданова базиса

Собственные векторы и собственные значения

Пусть A – матрица некоторого линейного преобразования порядка n.

Определение. Многочлен n-ой степени

P(l)=det(A-lЕ) (1.1)

называется характеристическим многочленом матрицы А, а его корни, которые могут быть как действительными, так и комплексными, называются характеристическими корнями этой матрицы.

Определение. Ненулевой вектор x линейного пространства V, удовлетворяющий условию

А(х)=lх, (1.2)

называется собственным вектором преобразования A. Число l называется собственным значением.

Замечание. Если в пространстве V задан базис, то это условие можно переписать следующим образом:

Ах=lх, (1.3)

где A – матрица преобразования, x – координатный столбец.

Определение. Алгебраической кратностью собственного значения lj называется кратность корня lj характеристического многочлена.

Определение. Совокупность всех собственных значений называется спектром матрицы.

Алгоритм нахождения собственных значений и собственных векторов

1. Найти собственные значения матрицы:

· записать характеристическое уравнение:

det(A-lЕ)=0; (1.4)

· найти его корни l j, j=1. n и их кратности.

2. Найти собственные векторы матрицы:

· для каждого l j решить уравнение

· найденный вектор х и будет собственным вектором, отвечающим собственному значению l j.

Пример1

Найдем собственные значения и собственные векторы, если известна матрица преобразования:

Найти базис собственных векторов

Записываем характеристический многочлен (1.1) и решаем характеристическое уравнение (1.4):

Найти базис собственных векторов

Получаем два собственных значения: l1=1 кратности m1=2 и l2=-1 кратности m2=1.

Далее с помощью соотношения (1.5) находим собственные векторы. Сначала ищем ФСР для l1=1:

Найти базис собственных векторов

Очевидно, что rang=1, следовательно, число собственных векторов для l1=1 равно n-rang=2. Найдем их:

Найти базис собственных векторов

Аналогичным образом находим собственные векторы для l2=-1. В данном случае будет один вектор:

Найти базис собственных векторов

Понятие жордановой клетки и жордановой матрицы

Определение. Жордановой клеткой порядка m, отвечающей собственному значению l, называется матрица вида:

Найти базис собственных векторов(2.1)

Иными словами, на главной диагонали такой матрицы располагается собственное значение l, диагональ, ближайшая к главной, сплошь занята единицами, а все остальные элементы матрицы равны нулю. Ниже даны примеры жордановых клеток соответственно первого, второго и третьего порядков:

Найти базис собственных векторов

Определение. Блочно-диагональная матрица, на диагонали которой стоят жордановы клетки, называется жордановой матрицей:

Найти базис собственных векторов(2.2)

Пример

Ниже представлена жорданова матрица, состоящая из трех жордановых клеток:

— размера 1, отвечающая собственному значению l1=3;

— размера 2, отвечающая собственному значению l2=4;

— размера 3, отвечающая собственному значению l3=5.

Найти базис собственных векторов

Количество и размер жордановых клеток

Пусть А — матрица, которую нужно привести к жордановой форме, lj (k=1. mj) — собственные значения этой матрицы.

Количество жордановых клеток размера k, отвечающих собственному значению lj, определяется следующим образом:

Найти базис собственных векторов(3.1)
Найти базис собственных векторов(3.2)

Пример

Пусть дана матрица преобразования:

Найти базис собственных векторов

Найдем количество и размер жордановых клеток, соответствующих каждому собственному значению этого преобразования.

Как искать собственные значения, было подробно рассказано в первом параграфе учебника. Поэтому опустим все расчеты, а сразу укажем собственные числа матрицы А: l1=0 кратности m1=1 и l2=-1 кратности m2=2.

Используя соотношения (3.1) и (3.2), найдем количество и размер жордановых клеток, соответствующих l1=0, m1=1.

Найти базис собственных векторов

Очевидно, что rang(A-l1E)=2 и, соответственно, r 1 =r 2 =rang(A-l1E) 1 =2, r 0 =n=3.

Количество жордановых клеток размера 1 будет равно: r 0 -2r 1 +r 2 =3-2*2+2=1.

Ясно, что других клеток для этого собственного значения нет. Т.о., для l1=0, m1=1 мы имеем единственную жорданову клетку вида J1(0)=(0).

Далее аналогичным образом определяем клетки для второго собственного значения l2=-1 кратности m2=2.

Найти базис собственных векторов

Очевидно, что rang(A-l2E)=2 и, соответственно, r 1 =r 2 =rang(A-l2E) 1 =2.

Найти базис собственных векторов

Т.е. rang(A-l1E) 2 =1 и, соответственно, r 1 =r 2 =rang(A-l1E) 2 =1.

Теперь можно определить количество и размер жордановых клеток для второго собственного значения:

— размера 1: r 0 -2r 1 +r 2 =3-2*2+1=0;

— размера 2: r 1 -2r 2 +r 3 =2-2*1+1=1.

Таким образом, для l2=-1 мы получили одну клетку размера 2:

Найти базис собственных векторов

Соответственно, жорданова форма для исходной матрицы А будет иметь вид:

Найти базис собственных векторов

Жорданов базис

Пусть матрица А приведена к жордановой форме J. Рассмотрим систему HJ=AH, где

— матрица перехода от исходного базиса (e) к жорданову базису (h). Это система матричных n 2 уравнений с n 2 неизвестными.

Определение. Пусть e – собственный вектор преобразования А, т.е. имеет место равенство А(e) = le. Вектор e1, удовлетворяющий равенству

называется присоединенным вектором первого порядка;

вектор e2, удовлетворяющий равенству

— присоединенным вектором второго порядка;

вектор en, удовлетворяющий равенству

— присоединенным вектором n-ого порядка.

Заметим также, что

(А-lе) k ek=e. (4.5)

Алгоритм нахождения векторов жорданова базиса

Чтобы найти жорданов базис, необходимо проделать следующие действия для каждой жордановой клетки.

Рассмотрим жорданову клетку порядка k, отвечающую собственному значению l. Для нее ищутся вектора жорданова базиса:

h, h 1 , h 2 , . h k-1 , где:

h — собственный вектор, отвечающий собственному значению l;

h 1 — присоединенный вектор 1-ого порядка;

h 2 — присоединенный вектор 2-ого порядка;

h k-1 — присоединенный вектор (k-1)-ого порядка;

Эта совокупность векторов ищется, используя следующую систему:

Найти базис собственных векторов(4.6)

В результате применения этих операций ко всем жордановым клеткам, получим векторы, составляющие жорданов базис:

h, h 1 , h 2 , . h k-1 , f, f 1 , f 2 , . f p-1 .

Векторам h соответствует жорданова клетка размера k, векторам f – размера p и т.д.
ex3

Пример

Вернемся к примеру, рассмотренному в прошлом разделе. Там нами были получены две жордановы клетки:

J1(0)=(0) и Найти базис собственных векторов

Рассмотрим первую, J1(0).

С помощью соотношения (1.5) из первого параграфа найдем собственный вектор, отвечающий собственному значению l1=0:

Найти базис собственных векторов

Присоединенных векторов для данной жордановой клетки, очевидно, нет.

Теперь рассмотрим вторую жорданову клетку, J2(-1). Очевидно, что для нее надо найти один собственный вектор и один присоединенный.

Используя систему (4.6), получим эти векторы:

Найти базис собственных векторов— собственный вектор, отвечающий l2=-1;

Найти базис собственных векторов— присоединенный вектор.

Мы получили все векторы, составляющие матрицу Н. Таким образом, матрица перехода к жорданову базису будет иметь следующий вид:

🎬 Видео

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Собственные значения и собственные векторыСкачать

Собственные значения и собственные векторы

Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

7 4 Собственные векторы и собственные значенияСкачать

7 4  Собственные векторы и собственные значения

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

Собственные числа, собственные, присоединенные векторы. Матрица оператора в базисе...Скачать

Собственные числа, собственные, присоединенные векторы. Матрица оператора в базисе...

Собственные значения и собственные векторы. ПримерСкачать

Собственные значения и собственные векторы. Пример

Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

Собственные значения и собственные векторы. ТемаСкачать

Собственные значения и собственные векторы. Тема

А.7.35 Собственные вектора и собственные значения матрицыСкачать

А.7.35 Собственные вектора и собственные значения матрицы

Практика 1. Часть 1. Собственные вектора и значения линейного оператора. Канонический вид.Скачать

Практика 1. Часть 1. Собственные вектора и значения линейного оператора. Канонический вид.

Базис. Разложение вектора по базису.Скачать

Базис. Разложение вектора по базису.

Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

Собственные числа и собственные векторы линейного оператораСкачать

Собственные числа и собственные векторы линейного оператора

Матрица линейного оператораСкачать

Матрица линейного оператора

Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис
Поделиться или сохранить к себе: