В данной статье мы рассмотрим такие темы, как:
- определение компланарных векторов;
- условия компланарности векторов;
- примеры задач на компланарность векторов.
- Определение компланарных векторов
- Условия компланарности векторов
- Компланарность векторов. Условия компланарности векторов.
- Условия компланарности векторов
- Примеры задач на компланарность векторов
- Компланарные векторы
- Понятие компланарности векторов
- Теоремы, связанные с условием компланарности трех векторов
- Готовые работы на аналогичную тему
- Признак и критерий компланарности векторов
- Пример задачи
- 📸 Видео
Видео:43. Компланарные векторыСкачать
Определение компланарных векторов
Компланарные векторы — это векторы, которые параллельны одной плоскости или лежат на одной плоскости.
Два любых вектора всегда компланарны, поскольку всегда можно найти плоскости параллельные 2-м произвольным векторам.
Видео:10 класс, 43 урок, Компланарные векторыСкачать
Условия компланарности векторов
- Для 3-х векторов выполняется условие: если смешанное произведение 3-х векторов равно нулю, то эти три вектора компланарны.
- Для 3-х векторов выполняется условие: если три вектора линейно зависимы, то они компланарны.
- Для n-векторов выполняется условие: если среди векторов не более 2-х линейно независимых векторов, то они компланарны.
Примеры решения задач на компланарность векторов
Исследуем на компланарность векторы
a ¯ = ( 1 ; 2 ; 3 ) , b = ( 1 ; 1 ; 1 ) и c ¯ = ( 1 ; 2 ; 1 )
Как решить?
Векторы будут являться компланарными, если их смешанное произведение равно нулю, поэтому вычисляем смешанное произведение заданных векторов. Для этого составляем определитель, по строкам которого записываются координаты векторов-сомножителей:
( a ¯ , b ¯ , c ¯ ) = 1 2 3 1 1 1 1 2 1 = = 1 × 1 × 1 + 1 × 2 × 3 + 2 × 1 × 1 — 1 × 1 × 3 — 2 × 1 × 1 — 1 × 2 × 1 = 2 ≠ 0
Отсюда следует, что смешанное произведение не равняется нулю, поэтому векторы не являются компланарными.
Ответ: векторы не являются компланарными.
Докажем, что три вектора
a ¯ = ( 1 ; — 1 ; 2 ) , b = ( 0 ; 1 ; — 1 ) и c ¯ = ( 2 ; — 2 ; 4 ) компланарны.
Как решить?
Находим смешанное произведение данных векторов:
( a ¯ , b ¯ , c ¯ ) = 1 — 1 2 0 1 — 1 2 — 2 4 = = 1 × 1 × 4 + 0 × ( — 2 ) × 2 + ( — 1 ) × ( — 1 ) × × 2 — 2 × 1 × 2 — ( — 2 ) × ( — 1 ) × 1 — 0 × ( — 1 )
Из данного примера видно, что смешанное произведение равняется нулю.
Ответ: векторы являются компланарными.
Проверим, компланарны ли векторы
Как решить?
Необходимо найти количество линейно независимых векторов: записываем значения векторов в матрицу и выполняем элементарные преобразования:
1 1 1 1 2 0 0 — 1 1 3 3 3
Из 2-ой строки вычитаем 1-ю, из 4-ой вычитаем 1-ю, умноженную на 3:
1 1 1 1 — 1 2 — 1 0 — 1 0 — 1 1 3 — 3 3 — 3 3 — 3
1 1 1 0 1 — 1 0 — 1 1 0 0 0
К 3-ей строке прибавляем 2-ю:
1 1 1 0 1 — 1 0 + 0 — 1 + 1 1 + ( — 1 ) 3 — 3 3 — 3 3 — 3
1 1 1 0 1 — 1 0 0 0 0 0 0
Поскольку в матрице только две ненулевые строки, делаем вывод, что среди них всего два линейно независимых вектора.
Ответ: векторы являются компланарными, поскольку среди них всего два линейно независимых вектора.
Видео:ГЕОМЕТРИЯ 11 класс: Компланарные векторыСкачать
Компланарность векторов. Условия компланарности векторов.
рис. 1 |
Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Условия компланарности векторов
Видео:Компланарные векторы. Видеоурок 18. Геометрия 10 классСкачать
Примеры задач на компланарность векторов
Решение: найдем смешанное произведение векторов
a · [ b × с ] = | 1 | 2 | 3 | = |
1 | 1 | 1 | ||
1 | 2 | 1 |
= 1·1·1 + 1·1·2 + 1·2·3 — 1·1·3 — 1·1·2 — 1·1·2 = 1 + 2 + 6 — 3 — 2 — 2 = 2
Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.
Решение: найдем смешанное произведение векторов
a · [ b × с ] = | 1 | 1 | 1 | = |
1 | 3 | 1 | ||
2 | 2 | 2 |
= 1·2·3 + 1·1·2 + 1·1·2 — 1·2·3 — 1·1·2 — 1·1·2 = 6 + 2 + 2 — 6 — 2 — 2 = 0
Ответ: вектора компланарны так, как их смешанное произведение равно нулю.
Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования
1 | 1 | 1 | ||
1 | 2 | 0 | ||
0 | -1 | 1 | ||
3 | 3 | 3 |
из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3
к 3-тей строке добавим 2-рую
Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.
Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.
Видео:Компланарные векторы. Видеоурок по геометрии 10 классСкачать
Компланарные векторы
Вы будете перенаправлены на Автор24
Видео:Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать
Понятие компланарности векторов
Для начала рассмотрим, какие вектора называются компланарными.
Два вектора, которые параллельны одной плоскости называются компланарными.
Рассмотри, компланарны ли векторы a, b и c на следующем примере. Пусть нам даны три вектора $overrightarrow, overrightarrow$ и $overrightarrow$. Тогда
Пары векторов $overrightarrow, и overrightarrow$, $overrightarrow$ и $overrightarrow$ и $overrightarrow$ и $overrightarrow$ компланарны между собой.
Если два из этих векторов, к примеру $overrightarrow, и overrightarrow$, коллинеарны, то векторы $overrightarrow, overrightarrow$ и $overrightarrow$ компланарны.
Если $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в одной плоскости, то они компланарны.
Для дальнейшего рассмотрения напомним следующую теорему.
Произвольный вектор $overrightarrow
$ можно разложить по двум неколлинеарным векторам $overrightarrow, $ и $overrightarrow$ с единственными коэффициентами разложения, то есть
Видео:Координаты вектора в пространстве. 11 класс.Скачать
Теоремы, связанные с условием компланарности трех векторов
Если один из трех данных векторов можно разложить по двум другим векторам, то есть
Доказательство.
Здесь возможны два случая.
Теорема доказана.
Готовые работы на аналогичную тему
Доказательство.
[overrightarrow=alpha overrightarrow+beta overrightarrow]
Причем это разложение единственно.
Которое также единственно.
Теорема доказана.
Видео:ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать
Признак и критерий компланарности векторов
Рисунок 1. Условие компланарности векторов. Автор24 — интернет-биржа студенческих работ
Видео:ГЕОМЕТРИЯ 11 класс: Вектора в пространствеСкачать
Пример задачи
Пусть нам дан куб $ABCDA_1B_1C_1D_1$. Разложите вектор $overrightarrow$ по векторам $overrightarrow и overrightarrow$.
Рисунок 2. Разложение по векторам. Автор24 — интернет-биржа студенческих работ
Решение.
Так как плоскости $(ABC)$ и $_1B_1C_1)$ параллельны, и векторы $overrightarrow$, $overrightarrow и overrightarrow$ параллельны, следовательно, по определению являются компланарными. Тогда, по теореме 1, вектор $overrightarrow$ можно разложить по векторам $overrightarrow и overrightarrow$ единственным образом.
Используя свойства сложения двух векторов, получим
Ответ: $overrightarrow+overrightarrow$.
Пусть нам дан параллелепипед. Найти тройки компланарных векторов, изображенных в параллелепипеде на рисунке ниже.
Рисунок 3. Параллелепипед. Автор24 — интернет-биржа студенческих работ
Решение.
Так как векторы $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в плоскости $(BOA)$ то эти векторы являются компланарными.
Так как векторы $overrightarrow, overrightarrow$ и $overrightarrow<_1>$ лежат в плоскости $(BOC)$ то эти векторы являются компланарными.
Так как векторы $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в плоскости $(COE)$ то эти векторы являются компланарными.
Доказать, что векторы с координатами $left(1, 13, 2right), left(3, -5, 2right)и (5,-1,4)$ компланарны.
Решение.
Применим признак компланарности трех векторов.
Рисунок 4. Нахождение определителя. Автор24 — интернет-биржа студенческих работ
Следовательно, это векторы компланарны, ч. т. д.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 27 04 2022
📸 Видео
Понятие вектора в пространстве. Видеоурок 16. Геометрия 10 классСкачать
Геометрия. 10 класс. Коллинеарность и компланарность векторов /13.04.2021/Скачать
Понятие вектора. Коллинеарные вектора. 9 класс.Скачать
Коллинеарные векторы.Скачать
Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать
ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать
Геометрия 10 класс (Урок№17 - Вектор в пространстве.)Скачать
Геометрия 10 класс (Урок№18 - Компланарные векторы. Векторный метод решения задач.)Скачать
10 класс, 45 урок, Разложение вектора по трем некомпланарным векторамСкачать
➡️ КАК ВЫЧИТАТЬ ВЕКТОРЫ?Скачать