Комплементарные вектора это в геометрии

Компланарные векторы и условие компланарности

В данной статье мы рассмотрим такие темы, как:

  • определение компланарных векторов;
  • условия компланарности векторов;
  • примеры задач на компланарность векторов.

Видео:43. Компланарные векторыСкачать

43. Компланарные векторы

Определение компланарных векторов

Компланарные векторы — это векторы, которые параллельны одной плоскости или лежат на одной плоскости.

Два любых вектора всегда компланарны, поскольку всегда можно найти плоскости параллельные 2-м произвольным векторам.

Видео:10 класс, 43 урок, Компланарные векторыСкачать

10 класс, 43 урок, Компланарные векторы

Условия компланарности векторов

  • Для 3-х векторов выполняется условие: если смешанное произведение 3-х векторов равно нулю, то эти три вектора компланарны.
  • Для 3-х векторов выполняется условие: если три вектора линейно зависимы, то они компланарны.
  • Для n-векторов выполняется условие: если среди векторов не более 2-х линейно независимых векторов, то они компланарны.

Примеры решения задач на компланарность векторов

Исследуем на компланарность векторы

a ¯ = ( 1 ; 2 ; 3 ) , b = ( 1 ; 1 ; 1 ) и c ¯ = ( 1 ; 2 ; 1 )

Как решить?

Векторы будут являться компланарными, если их смешанное произведение равно нулю, поэтому вычисляем смешанное произведение заданных векторов. Для этого составляем определитель, по строкам которого записываются координаты векторов-сомножителей:

( a ¯ , b ¯ , c ¯ ) = 1 2 3 1 1 1 1 2 1 = = 1 × 1 × 1 + 1 × 2 × 3 + 2 × 1 × 1 — 1 × 1 × 3 — 2 × 1 × 1 — 1 × 2 × 1 = 2 ≠ 0

Отсюда следует, что смешанное произведение не равняется нулю, поэтому векторы не являются компланарными.

Ответ: векторы не являются компланарными.

Докажем, что три вектора

a ¯ = ( 1 ; — 1 ; 2 ) , b = ( 0 ; 1 ; — 1 ) и c ¯ = ( 2 ; — 2 ; 4 ) компланарны.

Как решить?

Находим смешанное произведение данных векторов:

( a ¯ , b ¯ , c ¯ ) = 1 — 1 2 0 1 — 1 2 — 2 4 = = 1 × 1 × 4 + 0 × ( — 2 ) × 2 + ( — 1 ) × ( — 1 ) × × 2 — 2 × 1 × 2 — ( — 2 ) × ( — 1 ) × 1 — 0 × ( — 1 )

Из данного примера видно, что смешанное произведение равняется нулю.

Ответ: векторы являются компланарными.

Проверим, компланарны ли векторы

Как решить?

Необходимо найти количество линейно независимых векторов: записываем значения векторов в матрицу и выполняем элементарные преобразования:

1 1 1 1 2 0 0 — 1 1 3 3 3

Из 2-ой строки вычитаем 1-ю, из 4-ой вычитаем 1-ю, умноженную на 3:

1 1 1 1 — 1 2 — 1 0 — 1 0 — 1 1 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 — 1 1 0 0 0

К 3-ей строке прибавляем 2-ю:

1 1 1 0 1 — 1 0 + 0 — 1 + 1 1 + ( — 1 ) 3 — 3 3 — 3 3 — 3

1 1 1 0 1 — 1 0 0 0 0 0 0

Поскольку в матрице только две ненулевые строки, делаем вывод, что среди них всего два линейно независимых вектора.

Ответ: векторы являются компланарными, поскольку среди них всего два линейно независимых вектора.

Видео:ГЕОМЕТРИЯ 11 класс: Компланарные векторыСкачать

ГЕОМЕТРИЯ 11  класс: Компланарные векторы

Компланарность векторов. Условия компланарности векторов.

Комплементарные вектора это в геометрии
рис. 1

Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Условия компланарности векторов

Видео:Компланарные векторы. Видеоурок 18. Геометрия 10 классСкачать

Компланарные векторы. Видеоурок 18. Геометрия 10 класс

Примеры задач на компланарность векторов

Решение: найдем смешанное произведение векторов

a · [ b × с ] =123=
111
121

= 1·1·1 + 1·1·2 + 1·2·3 — 1·1·3 — 1·1·2 — 1·1·2 = 1 + 2 + 6 — 3 — 2 — 2 = 2

Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.

Решение: найдем смешанное произведение векторов

a · [ b × с ] =111=
131
222

= 1·2·3 + 1·1·2 + 1·1·2 — 1·2·3 — 1·1·2 — 1·1·2 = 6 + 2 + 2 — 6 — 2 — 2 = 0

Ответ: вектора компланарны так, как их смешанное произведение равно нулю.

Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования

Комплементарные вектора это в геометрии111Комплементарные вектора это в геометрии
120
0-11
333

из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3

Комплементарные вектора это в геометрии111Комплементарные вектора это в геометрииКомплементарные вектора это в геометрии111Комплементарные вектора это в геометрии1 — 12 — 10 — 101-10-110-113 — 33 — 33 — 3000

к 3-тей строке добавим 2-рую

Комплементарные вектора это в геометрии111Комплементарные вектора это в геометрии

Комплементарные вектора это в геометрии111Комплементарные вектора это в геометрии01-101-10 + 0-1 + 11 + (-1)0003 — 33 — 33 — 3000

Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.

Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.

Видео:Компланарные векторы. Видеоурок по геометрии 10 классСкачать

Компланарные векторы. Видеоурок по геометрии 10 класс

Компланарные векторы

Вы будете перенаправлены на Автор24

Видео:Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать

Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)

Понятие компланарности векторов

Для начала рассмотрим, какие вектора называются компланарными.

Два вектора, которые параллельны одной плоскости называются компланарными.

Рассмотри, компланарны ли векторы a, b и c на следующем примере. Пусть нам даны три вектора $overrightarrow, overrightarrow$ и $overrightarrow$. Тогда

Пары векторов $overrightarrow, и overrightarrow$, $overrightarrow$ и $overrightarrow$ и $overrightarrow$ и $overrightarrow$ компланарны между собой.

Если два из этих векторов, к примеру $overrightarrow, и overrightarrow$, коллинеарны, то векторы $overrightarrow, overrightarrow$ и $overrightarrow$ компланарны.

Если $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в одной плоскости, то они компланарны.

Для дальнейшего рассмотрения напомним следующую теорему.

Произвольный вектор $overrightarrow

$ можно разложить по двум неколлинеарным векторам $overrightarrow, $ и $overrightarrow$ с единственными коэффициентами разложения, то есть

Теоремы, связанные с условием компланарности трех векторов

Если один из трех данных векторов можно разложить по двум другим векторам, то есть

Доказательство.

Здесь возможны два случая.

Теорема доказана.

Готовые работы на аналогичную тему

Доказательство.

[overrightarrow=alpha overrightarrow+beta overrightarrow]

Причем это разложение единственно.

Которое также единственно.

Теорема доказана.

Признак и критерий компланарности векторов

Комплементарные вектора это в геометрии

Рисунок 1. Условие компланарности векторов. Автор24 — интернет-биржа студенческих работ

Видео:ГЕОМЕТРИЯ 11 класс: Вектора в пространствеСкачать

ГЕОМЕТРИЯ 11 класс: Вектора в пространстве

Пример задачи

Пусть нам дан куб $ABCDA_1B_1C_1D_1$. Разложите вектор $overrightarrow$ по векторам $overrightarrow и overrightarrow$.

Комплементарные вектора это в геометрии

Рисунок 2. Разложение по векторам. Автор24 — интернет-биржа студенческих работ

Решение.

Так как плоскости $(ABC)$ и $_1B_1C_1)$ параллельны, и векторы $overrightarrow$, $overrightarrow и overrightarrow$ параллельны, следовательно, по определению являются компланарными. Тогда, по теореме 1, вектор $overrightarrow$ можно разложить по векторам $overrightarrow и overrightarrow$ единственным образом.

Используя свойства сложения двух векторов, получим

Ответ: $overrightarrow+overrightarrow$.

Пусть нам дан параллелепипед. Найти тройки компланарных векторов, изображенных в параллелепипеде на рисунке ниже.

Комплементарные вектора это в геометрии

Рисунок 3. Параллелепипед. Автор24 — интернет-биржа студенческих работ

Решение.

Так как векторы $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в плоскости $(BOA)$ то эти векторы являются компланарными.

Так как векторы $overrightarrow, overrightarrow$ и $overrightarrow<_1>$ лежат в плоскости $(BOC)$ то эти векторы являются компланарными.

Так как векторы $overrightarrow, overrightarrow$ и $overrightarrow$ лежат в плоскости $(COE)$ то эти векторы являются компланарными.

Доказать, что векторы с координатами $left(1, 13, 2right), left(3, -5, 2right)и (5,-1,4)$ компланарны.

Решение.

Применим признак компланарности трех векторов.

Комплементарные вектора это в геометрии

Рисунок 4. Нахождение определителя. Автор24 — интернет-биржа студенческих работ

Следовательно, это векторы компланарны, ч. т. д.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 27 04 2022

📸 Видео

Геометрия. 10 класс. Коллинеарность и компланарность векторов /13.04.2021/Скачать

Геометрия. 10 класс. Коллинеарность и компланарность векторов /13.04.2021/

Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

Понятие вектора. Коллинеарные вектора. 9 класс.

Коллинеарные векторы.Скачать

Коллинеарные векторы.

Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Аналитическая геометрия, 1 урок, Векторы в пространстве

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

Геометрия 10 класс (Урок№17 - Вектор в пространстве.)Скачать

Геометрия 10 класс (Урок№17 - Вектор в пространстве.)

Геометрия 10 класс (Урок№18 - Компланарные векторы. Векторный метод решения задач.)Скачать

Геометрия 10 класс (Урок№18 - Компланарные векторы. Векторный метод решения задач.)

10 класс, 45 урок, Разложение вектора по трем некомпланарным векторамСкачать

10 класс, 45 урок, Разложение вектора по трем некомпланарным векторам

➡️ КАК ВЫЧИТАТЬ ВЕКТОРЫ?Скачать

➡️ КАК ВЫЧИТАТЬ ВЕКТОРЫ?
Поделиться или сохранить к себе: