Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).
рис. 1 |
- Условия коллинеарности векторов
- Примеры задач на коллинеарность векторов
- Примеры задач на коллинеарность векторов на плоскости
- Примеры задач на коллинеарность векторов в пространстве
- Условие коллинеарности двух векторов
- Докажите, что векторы АВ и CD коллинеарны, если А (1; 1), В (3; -2), С (-1; 3), В (5; -6).
- Ваш ответ
- решение вопроса
- Похожие вопросы
- 🎬 Видео
Видео:Коллинеарность векторовСкачать
Условия коллинеарности векторов
Два вектора будут коллинеарны при выполнении любого из этих условий:
Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что
N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.
N.B. Условие 3 применимо только для трехмерных (пространственных) задач.
Доказательство третего условия коллинеарности
Пусть есть два коллинеарные вектора a = < ax ; ay ; az > и b = < nax ; nay ; naz >. Найдем их векторное произведение
Видео:Коллинеарные векторы.Скачать
Примеры задач на коллинеарность векторов
Примеры задач на коллинеарность векторов на плоскости
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:
ax | = | ay | . |
bx | by |
Вектора a и b коллинеарны т.к. | 1 | = | 2 | . |
4 | 8 |
Вектора a и с не коллинеарны т.к. | 1 | ≠ | 2 | . |
5 | 9 |
Вектора с и b не коллинеарны т.к. | 5 | ≠ | 9 | . |
4 | 8 |
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | . |
bx | by |
3 | = | 2 | . |
9 | n |
Решим это уравнение:
n = | 2 · 9 | = 6 |
3 |
Ответ: вектора a и b коллинеарны при n = 6.
Примеры задач на коллинеарность векторов в пространстве
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:
ax | = | ay | = | az | . |
bx | by | bz |
Вектора a и b коллинеарны т.к. 1 4 = 2 8 = 3 12
Вектора a и с не коллинеарны т.к. 1 5 = 2 10 ≠ 3 12
Вектора с и b не коллинеарны т.к. 5 4 = 10 8 ≠ 12 12
Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:
Для этого найдем ненулевой компонент вектора a в данном случае это ay . Если вектора колинеарны то
n = | by | = | 6 | = 2 |
ay | 3 |
Найдем значение n a :
Так как b = n a , то вектора a и b коллинеарны.
Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности
ax | = | ay | = | az | . |
bx | by | bz |
3 | = | 2 | = | m |
9 | n | 12 |
Из этого соотношения получим два уравнения:
3 | = | 2 |
9 | n |
3 | = | m |
9 | 12 |
Решим эти уравнения:
n = | 2 · 9 | = 6 |
3 |
m = | 3 · 12 | = 4 |
9 |
Ответ: вектора a и b коллинеарны при n = 6 и m = 4.
Видео:№740. Начертите векторы АВ, CD, и EF так, чтобы:Скачать
Условие коллинеарности двух векторов
Пример №1 . Проверить, коллинеарны ли векторы AB и CD ; если да, то сонаправлены ли они. A(1;1), B(7;3), C(-4;-5), D(5;-2).
Решение.
Находим координаты векторов:
AB = (6;2)
CD = (9;3)
Используя условие коллинеарности векторов, устанавливаем, что координаты этих векторов пропорциональны:
Пример №2 . Проверить условие коллинеарности векторов a и b . a(-6;3), b(8;-4).
Решение.
Используя условие коллинеарности векторов, устанавливаем, что координаты этих векторов пропорциональны:
Решение.
Находим координаты векторов:
AB = (4;4)
CD = (4;-1)
Используя условие коллинеарности векторов, устанавливаем, что координаты этих векторов не пропорциональны:
Видео:Задача 2. Коллинеарны ли векторы с1 и с2, построенные по векторам a и b?Скачать
Докажите, что векторы АВ и CD коллинеарны, если А (1; 1), В (3; -2), С (-1; 3), В (5; -6).
Видео:№913. Векторы a и b коллинеарны. Коллинеарны ли векторы: а) а +3b и а; б) b-2а и a? Ответ обоснуйте.Скачать
Ваш ответ
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
решение вопроса
Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать
Похожие вопросы
- Все категории
- экономические 43,279
- гуманитарные 33,618
- юридические 17,900
- школьный раздел 606,962
- разное 16,829
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
🎬 Видео
Компланарны ли векторы: a=(2;5;8), b=(1;-3;-7) и c=(0;5;10)?Скачать
Понятие вектора. Коллинеарные векторы.Скачать
18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать
№750. Докажите, что если векторы АВ и СD равны, то середины отрезков AD и ВС совпадают.Скачать
Вектор. Определение. Коллинеарные векторы. Равные векторы.Скачать
Координаты вектора. 9 класс.Скачать
9 класс, 1 урок, Разложение вектора по двум неколлинеарным векторамСкачать
№778. Начертите попарно неколлинеарные векторы а, b и c. Постройте векторы:Скачать
Угол между векторами. 9 класс.Скачать
10 класс, 43 урок, Компланарные векторыСкачать
ПРОСТОЙ СПОСОБ, как запомнить Векторы за 10 минут! (вы будете в шоке)Скачать
№747. Выпишите пары коллинеарных векторов, которые определяются сторонами: а) параллелограмма MNPQСкачать