Расстояние от прямой до центра окружности больше радиуса то

Касательная и секущая к окружности

На плоскости прямая и окружность могут либо пересекаться друг с другом, либо не пересекаться:

Расстояние от прямой до центра окружности больше радиуса то

Расстояние от центра O до прямой m равно длине перпендикуляра OA. Следовательно, расстояние от центра окружности до прямой всегда будет равно перпендикуляру, опущенному из центра окружности на прямую.

Если расстояние от центра окружности до прямой больше радиуса данной окружности, то прямая и окружность не пересекаются и не имеют общих точек:

Расстояние от прямой до центра окружности больше радиуса то

Видео:№631. Пусть d — расстояние от центра окружности радиуса r до прямой р. Каково взаимное расположениеСкачать

№631. Пусть d — расстояние от центра окружности радиуса r до прямой р. Каково взаимное расположение

Касательная

Если расстояние от центра окружности до прямой равно радиусу данной окружности, то прямая касается окружности и они имеют одну общую точку, такая прямая называется касательной к окружности:

Расстояние от прямой до центра окружности больше радиуса то

Прямая m — касательная. Точка соприкосновения прямой и окружности, то есть их общая точка, называется точкой касания: точка A — точка касания.

Касательная – это прямая линия, имеющая с окружностью одну общую точку.

Видео:Геометрия 8 класс (Урок№25 - Взаимное расположение прямой и окружности.)Скачать

Геометрия 8 класс (Урок№25 - Взаимное расположение прямой и окружности.)

Секущая

Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется секущей к окружности:

Расстояние от прямой до центра окружности больше радиуса то

Секущая – это прямая линия, имеющая с окружностью две общие точки.

Видео:№632. Расстояние от точки А до центра окружности меньше радиуса окружности. Докажите, что любаяСкачать

№632. Расстояние от точки А до центра окружности меньше радиуса окружности. Докажите, что любая

Взаимное расположение прямой и окружности

Выясним количество общих точек прямой и окружности в зависимости от их взаимного расположения. Если прямая l проходит через центр O окружности (Рис.1), то она пересекает окружность в двух точках, которые являются концами диаметра окружности.

Пусть прямая не проходит через центр окружности. Проведем перпендикуляр OH к прямой l (Рис.2, Рис.3, Рис.4). Обозначим расстояние от центра окружности до прямой l буквой d. Рассмотрим сколько общих точек будут иметь прямая и окружность в зависимости от соотношения d и r.

Расстояние от прямой до центра окружности больше радиуса тоРасстояние от прямой до центра окружности больше радиуса то

Теорема 1. Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность имеют две общие точки.

В этом случае прямая называется секущей по отношению к окружности.

Доказательство. Пусть расстояние от центра окружности до прямой меньше радиуса окружности: d Теорема 2. Если расстояние от центра окружности до прямой равно радиусу окружности, то прямая и окружность имеют одну общую точку.

Расстояние от прямой до центра окружности больше радиуса то

Доказательство. Пусть расстояние от центра окружности до прямой равно радиусу окружности: d=r (Рис.3). В этом случае OH=r, т.е. точка H лежит на окружности и является общей точкой прямой l и окружности. Возьмем на прямой l любую точку M отличной от H. Тогда расстояние от OM больше расстояния OH=r, поскольку наклонная OM больше перпендикуляра OH к прямой l. Следовательно точка M не лежит на окружности. Получили, что точка H единственная общая точка прямой l и окружности.Расстояние от прямой до центра окружности больше радиуса то

Теорема 3. Если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.

Расстояние от прямой до центра окружности больше радиуса то

Доказательство. Пусть расстояние от центра окружности до прямой больше радиуса окружности:d>r (Рис.4). Тогда ( small OH > r). Возьмем на прямой l любую точку M отличной от H. Тогда ( small OM > OH>r). Следовательно точка M не лежит на окружности. Таким образом, если расстояние от центра окружности до прямой больше радиуса окружности, то прямая и окружность не имеют общую точку.Расстояние от прямой до центра окружности больше радиуса то

Видео:8 класс, 31 урок, Взаимное расположение прямой и окружностиСкачать

8 класс, 31 урок, Взаимное расположение прямой и окружности

Если расстояние от центра окружности до прямой больше радиуса окружности

Видео:ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5Скачать

ОГЭ ЗАДАНИЕ 16 НАЙДИТЕ ДЛИНУ ХОРДЫ ОКРУЖНОСТИ ЕСЛИ РАДИУС 13 РАССТОЯНИЕ ДО ХОРДЫ 5

Ваш ответ

Видео:Найти расстояние от центра окружности до вершины прямого углаСкачать

Найти расстояние от центра окружности до вершины прямого угла

решение вопроса

Видео:Как найти диаметр окружности, зная длину хорды и расстояние от центра окружности до неё? #огэ #егэСкачать

Как найти диаметр окружности, зная длину хорды и расстояние от центра окружности до неё? #огэ #егэ

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,044
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

🔥 Видео

Планиметрия 12 | mathus.ru | расстояние между центрами пересекающихся окружностейСкачать

Планиметрия 12 | mathus.ru | расстояние между центрами пересекающихся окружностей

Прямая и окружность. Математика. 6 класс.Скачать

Прямая и  окружность. Математика. 6 класс.

Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #ShortsСкачать

Расстояние между центрами вписанной и описанной окружностей треугольника и их радиусами #Shorts

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

Найти центр и радиус окружностиСкачать

Найти центр и радиус окружности

Радиус описанной окружностиСкачать

Радиус описанной окружности

Геометрия на ЕГЭ. Расстояние от центра окружности до произвольной точки хорды. Степень точки.Скачать

Геометрия на ЕГЭ. Расстояние от центра окружности до произвольной точки хорды. Степень точки.

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shortsСкачать

Как найти центр и радиус нарисованной окружности #математика #егэ2023 #школа #fyp #shorts

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Найдите длину хорды окружности радиусом 13, если расстояние от центра окружности до хорды равно 5.Скачать

Найдите длину хорды окружности радиусом 13, если расстояние от центра окружности до хорды равно 5.

Окружность, диаметр, хорда геометрия 7 классСкачать

Окружность, диаметр, хорда геометрия 7 класс

ОГЭ. Задание 24. Геометрическая задача на вычисление.Скачать

ОГЭ. Задание 24. Геометрическая задача на вычисление.
Поделиться или сохранить к себе: