Прежде чем приступить к тематике статьи, напомним основные понятия.
Вектор – отрезок прямой, характеризующийся численным значением и направлением. Вектор обозначается строчной латинской буквой со стрелкой сверху. При наличии конкретных точек границ обозначение вектора выглядит как две прописные латинские буквы (маркирующие границы вектора) также со стрелкой сверху.
Нулевой вектор – любая точка плоскости, обозначается как нуль со стрелкой сверху.
Длина вектора – величина, равная или большая нуля, определяющая длину отрезка, составляющего вектор.
Коллинеарные векторы – лежащие на одной прямой или на параллельных прямых. Не выполняющие это условие векторы называют неколлинеарными.
- Сложение двух векторов
- Сложение нескольких векторов
- Умножение вектора на число
- Свойства операций над векторами
- Сумма векторов: графический метод, примеры, решенные упражнения.
- Содержание:
- Графический метод сложения векторов
- пример
- Частный случай: сумма параллельных векторов
- Примеры сложения векторов
- — Смещения
- Шаги к векторному сложению
- — Результирующая скорость
- Упражнение решено
- Решение
- Ссылки
- Операции с векторами
- Правильно — векторы
- Сложение
- Интуитивное изображение сложения
- Вычитание
- Длина вектора
- Умножение и деление вектора на число
- Да вроде несложно!
- Что дальше
Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать
Сложение двух векторов
Исходные данные: векторы a → и b → . Для выполнения над ними операции сложения необходимо из произвольной точки отложить вектор A B → , равный вектору а → ; из полученной точки undefined – вектор В С → , равный вектору b → . Соединив точки undefined и C , получаем отрезок (вектор) А С → , который и будет являться суммой исходных данных. Иначе описанную схему сложения векторов называют правилом треугольника.
Геометрически сложение векторов выглядит так:
— для неколлинеарных векторов:
— для коллинеарных (сонаправленных или противоположнонаправленных) векторов:
Видео:ВЫЧИТАНИЕ ВЕКТОРОВ ЧАСТЬ I #егэ #огэ #математика #геометрия #профильныйегэСкачать
Сложение нескольких векторов
Взяв за основу описанную выше схему, мы получаем возможность произвести операцию сложения векторов в количестве более 2: поочередно прибавляя каждый последующий вектор.
Исходные данные: векторы a → , b → , c → , d → . Из произвольной точки А на плоскости необходимо отложить отрезок (вектор), равный вектору a → ; затем от конца полученного вектора откладывается вектор, равный вектору b → ; далее – по тому же принципу откладываются последующие векторы. Конечной точкой последнего отложенного вектора будет точка B , а полученный отрезок (вектор) A B → – суммой всех исходных данных. Описанную схему сложения нескольких векторов называют также правилом многоугольника .
Геометрически оно выглядит следующим образом:
Отдельной схемы действия по вычитанию векторов нет, т.к. по сути разность векторов a → и b → есть сумма векторов a → и — b → .
Видео:Сложение векторов. Правило параллелограмма. 9 класс.Скачать
Умножение вектора на число
Чтобы произвести действие умножения вектора на некое число k , необходимо учитывать следующие правила:
— если k > 1 , то это число приведет к растяжению вектора в k раз;
— если 0 k 1 , то это число приведет к сжатию вектора в 1 k раз;
— если k 0 , то это число приведет к смене направления вектора при одновременном выполнении одного из первых двух правил;
— если k = 1 , то вектор остается прежним;
— если одно из множителей – нулевой вектор или число, равное нулю, результатом умножения будет нулевой вектор.
Исходные данные:
1) вектор a → и число k = 2 ;
2) вектор b → и число k = — 1 3 .
Геометрически результат умножения в соответствии с указанными выше правилами будет выглядеть следующим образом:
Видео:Вычитание векторов. 9 класс.Скачать
Свойства операций над векторами
Описанным выше операциям над векторами присущи свойства, некоторые из которых очевидны, а прочие можно обосновать геометрически.
Исходные данные: векторы a → , b → , c → и произвольные действительные числа λ и μ .
- Свойство коммутативности: a ⇀ + b → = b → + a → .
- Свойство ассоциативности: ( a → + b → ) + c → = a → + ( b → + c → ) .
- Свойство использования нейтрального элемента по сложению (нулевой вектор 0 → ⃗). Это очевидное свойство: a → + 0 → = a →
- Свойство использования нейтрального элемента по умножению (число, равное единице): 1 · a → = a → . Это очевидное свойство, не предполагающее никаких геометрических преобразований.
- Любой ненулевой вектор a → имеет противоположный вектор — a → и верным является равенство: a → + ( — a → ) = 0 → . Указанное свойство — очевидное.
- Сочетательное свойство операции умножения: ( λ · µ ) · a → = λ · ( µ · a → ) . Например, растяжение вектора при умножении на число 10 можно произвести, сначала растянув вектор в 2 раза, а затем полученный результат еще в 5 раз. Также возможен вариант умножения на число 10 при сжатии вектора в 5 раз и последующего растяжения полученного результата в 50 раз.
- Первое распределительное свойство (очевидно): ( λ + µ ) · a → = λ · a → + µ · a → .
- Второе распределительное свойство: λ · ( a → + b → ) = λ · a → + λ · b → .
Геометрически это свойство определяется подобием треугольников:
Свойства коммутативности и ассоциативности дают возможность складывать векторы в произвольном порядке.
Перечисленные свойства операций позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым. Рассмотрим это на примере.
Задача: упростить выражение a → — 2 · ( b → + 3 · a → )
Решение
— используя второе распределительное свойство, получим: a → — 2 · ( b → + 3 · a → ) = a → — 2 · b → — 2 · ( 3 · a → )
— задействуем сочетательное свойство умножения, выражение приобретет следующий вид: a → — 2 · b → — 2 · ( 3 · a → ) = a → — 2 · b → — ( 2 · 3 ) · a → = a → — 2 · b → — 6 · a →
— используя свойство коммутативности, меняем местами слагаемые: a → — 2 · b → — 6 · a → = a → — 6 · a → — 2 · b →
— затем по первому распределительному свойству получаем: a → — 6 · a → — 2 · b → = ( 1 — 6 ) · a → — 2 · b → = — 5 · a → — 2 · b → Краткая запись решения будет выглядеть так: a → — 2 · ( b → + 3 · a → ) = a → — 2 · b → — 2 · 3 · a → = 5 · a → — 2 · b →
Ответ: a → — 2 · ( b → + 3 · a → ) = — 5 · a → — 2 · b →
Видео:СЛОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #Shorts #геометрияСкачать
Сумма векторов: графический метод, примеры, решенные упражнения.
Видео:сложение ВЕКТОРОВ вычитание ВЕКТОРОВ 9 класс геометрия АтанасянСкачать
Содержание:
В векторная сумма это операция сложения между векторами, которая приводит к другому вектору. Векторы характеризуются величиной, а также направлением и смыслом. Следовательно, в общем случае невозможно сложить их, как это было бы со скалярными величинами, то есть путем сложения чисел.
Вектор, полученный из суммы нескольких векторов, называется результирующий вектор. В механике говорят о Равнодействующая сила, которая представляет собой векторную сумму всех сил, действующих на тело. Эта равнодействующая эквивалентна множеству или системе сил.
Чтобы полностью указать вектор суммы, необходимо указать величину и единицу, направление и смысл.
Важно отметить, что при сложении векторов они должны представлять одну и ту же физическую величину, поэтому векторная сумма является однородной операцией. Это означает, что мы можем добавлять одну силу к другой, но не силу со смещением, поскольку результат не имеет смысла.
Для нахождения результирующего вектора доступны несколько методов: графический и аналитический. Чтобы найти векторные суммы с помощью графических методов, мы начнем с простого представления вектора, а именно с ориентированного сегмента или стрелки, подобного этому:
Векторы обозначаются жирными буквами в печатном тексте или стрелкой над буквой, чтобы отличать их от соответствующих величин или скалярных величин. Например, величина вектора vЭто просто v.
Видео:Сложение векторов. 9 класс.Скачать
Графический метод сложения векторов
Чтобы добавить более двух копланарных векторов, полигональный метод или метод траверса, который состоит из трансляции себя параллельно каждому из векторов слагаемых. Характерной чертой векторов является то, что они инвариантны относительно сдвига, поэтому мы будем использовать это свойство для определения суммы.
Мы начинаем с любого из векторов, так как сложение векторов коммутативно и порядок слагаемых не влияет на сумму. Затем переводится второй вектор, сопоставляя его начало с концом первого.
Затем он переносится к следующему вектору и помещается следующим, следуя той же процедуре, которая заключается в совпадении начала координат с концом предыдущего. Продолжайте таким образом, пока не будет установлен последний вектор.
Результирующий вектор — это тот, который соединяет начало первого со свободным концом последнего. Название этого метода происходит от получившегося рисунка: многоугольник.
Видео:10 класс, 40 урок, Сложение и вычитание векторовСкачать
пример
Возьмем для примера сумму двух векторов или Y v показано на рисунке выше.
Начиная с вектора или, переехал в вектор v чтобы его начало совпадало с концом первого. Результирующий вектор ш взят из происхождения или до конца v, образуя трехстороннюю фигуру: треугольник. Поэтому в этом частном случае процедура называется метод треугольника.
Обратите внимание на важную деталь: величина или модуль результирующего вектора не является суммой модулей добавленных векторов. Фактически, это почти всегда меньше, если векторы не параллельны.
Посмотрим, что происходит в этом случае ниже.
Видео:83. Законы сложения векторов. Правило параллелограммаСкачать
Частный случай: сумма параллельных векторов
Описанный метод применим и к частному случаю, когда векторы параллельны. Рассмотрим следующий пример:
Оставлено вектору v в исходном положении и переводится в вектор или таким образом, что его происхождение совпадает с концом v. Теперь нарисован вектор, начиная с начала координат v и заканчивает конец или.
Это результирующий вектор ш а его размер — это сумма размеров слагаемых. Направление и смысл трех векторов одинаковы.
Результирующий вектор имеет максимальный модуль, если слагаемые образуют угол 0º друг с другом, как в примере. Если векторы расположены под углом 180º друг к другу, то результирующий вектор имеет минимальный модуль.
Видео:СКАЛЯРНОЕ УМНОЖЕНИЕ ВЕКТОРОВ ЧАСТЬ I #математика #егэ #огэ #формулы #профильныйегэ #векторыСкачать
Примеры сложения векторов
Видео:Сложение коллинеарных векторовСкачать
— Смещения
Велосипедист проезжает сначала 3 км в северном направлении, а затем 4 км на запад. Ваше перемещение, которое мы называем р, легко найти с помощью метода треугольника плюс система отсчета, где отмечены стороны света:
Видео:Сложение и вычитание векторов. Практическая часть. 11 класс.Скачать
Шаги к векторному сложению
— Начальная точка совпадает с началом системы отсчета.
-По осям координат выбран масштаб, который в данном случае составляет 1 см = 1 км.
-Первое смещение нарисовано в масштабе d1.
-Следующий d1 второе смещение нарисовано d2, также в масштабе.
-В результате смещения р — вектор, идущий от начала до конца d2.
-Размерр измеряется градуированной линейкой, легко проверить, что R = 5.
-Наконец, угол, который р форма по горизонтали измерена с помощью транспортира и составляет θ = 37 0
Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать
— Результирующая скорость
Пловец хочет пересечь реку и для этого плывет со скоростью 6 км / ч перпендикулярно берегу, но его отклоняет течение со скоростью 4 км / ч.
Чтобы узнать его итоговую скорость, добавляются векторы скорости пловца, изображенного вертикально, и вектора скорости, отображаемого горизонтально.
Графическим методом получается результирующая скорость. vр:
Отклонение, которое испытывает пловец, можно рассчитать следующим образом:
θ = arctg (4/6) = 33,7º вправо от начального направления
Величина его скорости увеличивается благодаря тому, что скорость реки складывается векторно. Его можно найти, аккуратно установив масштаб, как в примере выше.
Или с помощью тригонометрических соотношений 33,7º:
грех 33,7º = 4 / vр
vр = 4 / sin 33,7º = 7,21 км / ч
Видео:Физика | Ликбез по векторамСкачать
Упражнение решено
На частицу действуют следующие силы, величины которых указаны ниже:
Найдите равнодействующую силу.
Видео:Урок 4. Векторы. Сложение векторов. Правило треугольника. Правило параллелограмма.Скачать
Решение
Мы можем складывать графически, начиная с любого из векторов, поскольку векторная сумма коммутативна.
На рисунке A мы начали с F1. Устанавливая масштаб, с помощью линейки и квадрата переносятся другие векторы, чтобы расположить их один за другим.
Вектор Fр направлено от происхождения F1 до конца F4. Его величина составляет 5,2 Н, и он образует угол 26,5 ° по отношению к горизонту.
На рисунке B была решена та же проблема, начиная с F3 и заканчивая F4, чтобы сравнятьсяFр .
Многоугольники разные, но результат тот же. Читатель может провести тест, снова изменив порядок векторов.
Видео:Сложение нескольких векторов. Правило многоугольникаСкачать
Ссылки
- Бауэр, В. 2011. Физика для инженерии и науки. Том 1. Мак Гроу Хилл.
- Бедфорд, 2000. А. Инженерная механика: Статика. Эддисон Уэсли.
- Фигероа, Д. (2005). Серия: Физика для науки и техники. Том 1. Кинематика. Отредактировал Дуглас Фигероа (USB).
- Джамбаттиста, А. 2010. Физика. 2-й. Эд. Макгроу Хилл.
- Сирс, Земанский. 2016. Университетская физика с современной физикой. 14-го. Ред. Том 1.
Ошибка невозвратных затрат: что это такое и как оно усугубляет проблемы
Гипоталамо-гипофизарно-яичниковая ось: строение и функции
Видео:Построить разность векторов.Скачать
Операции с векторами
Как сложить и перемножить векторы (и зачем).
Мы постепенно показываем вам математику за пределами школьной программы. Начинали со знакомства с векторами, теперь сделаем следующий шаг.
Напомним основные мысли:
- Вектор — это абстрактное понятие, которое представляет собой организованную последовательность каких-то чисел.
- В виде вектора можно представить координаты предмета в каком-то пространстве; площадь квартиры и её стоимость; цифровые данные анкеты какого-то человека и динамику цен на нефть.
- Если по-простому, то векторы нужны, чтобы обрабатывать большое количество организованных чисел. Представьте, что вектор — это коробка с конфетами, только вместо конфет — числа. Каждое число стоит в своей ячейке.
- Машинное обучение основано на перемножении матриц, которые, в свою очередь, можно представить как наборы векторов. Так что векторы лежат в глубине всех модных и молодёжных технологий ИИ.
С векторами можно совершать некоторые математические операции. Вот о них и поговорим.
Видео:ТОПОВЫЙ СПОСОБ СЛОЖЕНИЯ ВЕКТОРОВСкачать
Правильно — векторы
Математики часто говорят во множественном числе «вектора», но по словарю правильно «векторы». Это такой профессиональный жаргон, как «договора», «бухгалтера» и «сервера». Мы будем использовать «векторы», но если вы окажетесь в постковидном математическом баре, лучше говорите «вектора».
Видео:Удалили с экзамена ОГЭ Устное Собеседование shorts #shortsСкачать
Сложение
Представим четыре вектора, которые лежат в двухмерном пространстве и пока что не связаны между собой. Нарисуем эти векторы и обозначим их буквами X, Y, Z, K.
Поскольку векторы находятся в одном пространстве, координаты каждого состоят из одинакового количества чисел. У нас пример с двухмерным пространством и два числа. Выглядеть это будет так: X = (6, 4); Y = (3, −2); Z = (−7, −5); K = (−10, 4).
Векторы X, Y, Z, K в двухмерном пространстве
Если у нас несколько векторов с одинаковым количеством чисел, то эти числа можно поэлементно складывать. Для этого мы берём первое число одного вектора, складываем его с первым числом другого вектора и так далее.
Предположим, нам нужно сложить векторы X и Y.
X = (6, 4)
Y = (3, −2)
X + Y = (9, 2)
Вроде просто: складываешь последовательно все координаты, результаты сложения складываешь в исходные коробочки. Так можно делать с любым количеством координат. Помните, что вектор — это необязательно стрелка в двумерном пространстве. Она может быть и в десятимерном пространстве — с точки зрения математики это неважно.
Например, вот сложение векторов с пятью координатами:
X = (6, 4, 11, 14, 99)
Y = (3, -2, 10, -10, 1)
X + Y = (9, 2, 21, 4, 100)
Видео:Сложение, вычитание, умножение на число векторов через координату. 9 класс.Скачать
Интуитивное изображение сложения
Для интуитивного восприятия удобно использовать векторы с двумя координатами. Их удобно рисовать на координатной плоскости и таким образом смотреть на геометрию.
Например, можно на плоскости показать, как будет работать сложение двух векторов. Для этого есть два метода: метод треугольника и метод параллелограмма.
Метод треугольника: ставим векторы Х и Y в очередь друг за другом. Для этого берём вектор Х, ставим за ним вектор Y и получаем новый вектор. Новый вектор начинается в хвосте вектора Х и заканчивается на стрелке вектора Y. Этот вектор — результат сложения. Представьте, что это ребёночек двух векторов.
Сложение векторов по методу треугольника: X = (6, 4); Y = (3, −2); Х + Y = (9, 2)
Чтобы воспользоваться методом параллелограмма, нам нужно поставить векторы Х и Y в одну исходную точку. Дальше мы дублируем векторы Х и Y, формируем параллелограмм и получаем новый вектор. В новом векторе соединяем исходную точку с исходной точкой дублирующих векторов — стрелка проходит посередине параллелограмма. Длина нового вектора — это сумма векторов Х и Y.
Сложение по методу параллелограмма и треугольника даёт одинаковый результат. Поэтому выбирайте вариант, который больше подходит под задачу.
Сложение векторов по методу параллелограмма: X = (6, 4); Y = (3, -2); Х + Y = (9, 2)
Вычитание
Вычитание векторов немного сложнее. Чтобы вычесть векторы, нужно «развернуть» вычитаемый вектор и сложить его с исходным. «Развернуть» — то есть направить в обратную сторону, «перевернув» знаки координат. Получится конструкция вроде такой: Х + (−Y)
Дальше используются правила сложения. Пошагово это выглядит так:
- У нас есть X = (6, 4) и Y = (3, −2).
- Превращаем формулу Х − Y в формулу Х + (−Y).
- Разворачиваем вектор Y. Было: Y = (3, −2). Стало: −Y = (−3, 2).
- Считаем: X + (−Y) = (3, 6).
Теперь посмотрим, как выглядит вычитание векторов на графике:
Вычитание векторов по методу треугольника: X = (6, 4); −Y = (−3, 2); X + (−Y) = (3, 6) Вычитание векторов по методу параллелограмма: X = (6, 4); −Y = (−3, 2); X + (−Y) = (3, 6)
Длина вектора
Длина вектора — это одно число, которое измеряется расстоянием от кончика до стрелки вектора. Длину вектора нельзя путать с координатами. Координаты — это несколько чисел, которые указывают на расположение стрелки вектора. По координатам можно определить только конечную точку вектора. Например, если X = (6, 2), то стрелка будет находиться в точке 6 по оси Х. Или другой пример: если Y = (6, 5), то стрелка этого вектора будет находиться в точке 5 по оси Y.
Предположим, нам известны начальные точки векторов X и Y. Пусть это будет точка 2 по оси X и точка 2 по оси Y. Так мы можем легко посчитать длину отрезков:
X = 6 − 2 = 4
Y = 5 − 2 = 3
Иногда приходится рассчитывать длину третьего вектора, который привязан к двум другим векторам. Это легко сделать с помощью теоремы Пифагора — это когда квадрат гипотенузы равен сумме квадратов катетов. В нашем случае катетами будут длины векторов X и Y. Вспоминаем школьную формулу и считаем:
|C|2 = 42 + 32 = 25
|C| = √25 = 5 Длина вектора считается по формуле прямоугольного треугольника. Чтобы было проще представить — перенесите векторы на систему координат
Это формула для двумерного пространства. В трёхмерном пространстве формула похожая: нужно сложить квадраты трёх координат и вычислить квадратный корень из суммы.
В пространстве с большим числом измерений формула выглядит сложнее, но по сути то же: складываем все квадраты координат и получаем квадратный корень из этой суммы.
Умножение и деление вектора на число
Умножение и деление позволяют изменить длину и направление вектора. Если мы умножим вектор Х на три, то увеличим его длину в три раза. Если умножим на минус три — увеличим длину и изменим его направление на противоположное.
Умножение вектора на число
Для деления сохраняются аналогичные правила. Делим вектор Х на три и сокращаем длину в три раза. Делим на минус три — сокращаем и разворачиваем.
Деление вектора на число
Да вроде несложно!
Пока ничего сложного. Но если углубляться, вы узнаете, что:
- векторы можно умножать на векторы тремя способами в зависимости от задачи и от того, что мы понимаем под умножением;
- если от векторов перейти к матрицам, то перемножение матриц имеет несколько более сложную и довольно неинтуитивную математику;
- а перемножение матриц — это и есть машинное обучение.
Что дальше
В следующей статье рассмотрим линейную зависимость векторов. Чтобы не скучать — посмотрите интервью с Анастасией Никулиной. Анастасия сеньор-дата-сайентист в Росбанке и по совместительству блогер с интересной историей.