Как найти площадь грани тетраэдра построенного на векторах

Площадь грани abcd векторах
Содержание
  1. Онлайн калькулятор. Площадь параллелограмма построенного на векторах.
  2. Калькулятор для вычисления площади параллелограмма построенного на векторах
  3. Инструкция использования калькулятора для вычисления площади параллелограмма построенного на векторах
  4. Ввод данных в калькулятор для вычисления площади параллелограмма построенного на векторах
  5. Дополнительные возможности калькулятора вычисления площади параллелограмма построенного на векторах
  6. Теория. Площадь параллелограмма построенного на векторах.
  7. Онлайн решение Пирамиды по координатам вершин
  8. Смешанное, векторное и скалярное произведение векторов
  9. Онлайн решение Пирамиды по координатам вершин
  10. Онлайн калькулятор. Объем пирамиды (объем тетраэдра) построенной на векторах.
  11. Калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
  12. Инструкция использования калькулятора для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
  13. Ввод данных в калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах
  14. Дополнительные возможности калькулятора вычисления объема пирамиды (объема тетраэдра) построенной на векторах
  15. Теория. Объем пирамиды (объем тетраэдра) построенной на векторах
  16. 📺 Видео

Видео:Площадь параллелограмма, построенного на данных векторахСкачать

Площадь параллелограмма, построенного на данных векторах

Онлайн калькулятор. Площадь параллелограмма построенного на векторах.

Этот онлайн калькулятор позволит вам очень просто найти площадь параллелограмма построенного на векторах.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление площади параллелограмма построенного на векторах и закрепить пройденый материал.

Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACD

Калькулятор для вычисления площади параллелограмма построенного на векторах

Как найти площадь грани тетраэдра построенного на векторах

Выберите каким образом задается параллелограмм:

Введите значения векторов: Введите координаты трех любых вершин параллелограмма:

Инструкция использования калькулятора для вычисления площади параллелограмма построенного на векторах

Ввод данных в калькулятор для вычисления площади параллелограмма построенного на векторах

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора вычисления площади параллелограмма построенного на векторах

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Теория. Площадь параллелограмма построенного на векторах.

Как найти площадь грани тетраэдра построенного на векторах

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Видео:как найти площадь параллелограмма построенного на векторахСкачать

как найти площадь параллелограмма построенного на векторах

Онлайн решение Пирамиды по координатам вершин

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

A ( ; ; ), B ( ; ; ),
C ( ; ; ), D ( ; ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать

Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.

Смешанное, векторное и скалярное произведение векторов

Задача:

Как найти площадь грани тетраэдра построенного на векторахДан параллелепипед ABCDA1B1C1D1, построен на векторах AB(4,3,0), AD(2,1,2) и AA1(-3,-2,5).
Найти:

Решение:

  • а) Объем параллелепипеда будем искать через смешанное произведение векторов (AB AD AA1). Мы знаем, что модуль смешанного произведения векторов равен объему параллелепипеда, построенному на этих векторах.
(AB AD AA1)=
430
212
-3-25
=20 — 18 + 0 — 0 — 30 + 16=-12.

Мы нашли смешанное произведение, ещё надо его взять по модулю и найдём объем параллелепипеда:
VABCDA1B1C1D1=12.
б) Площадь, как мы уже знаем, можно искать через векторное произведение векторов. Грань ABCD построена на векторах AB и AD, найдём их векторное произведение. SABCD= |[AB AD]|.

[AB AD]=
ijk
430
212
=6i — 8j — 2k,

Теперь найдём модуль этого вектора:

SABCD= |[AB AD]|=√(36+64+4)=2√(26).
[AD AA1]=
ijk
212
-3-25
=9i — 16jk,

SADD1A1= |[AD AA1]|=√(81+256+1)=13√2.

  • в) Что бы найти длину высоты, проведенной из вершины A1 на грань ABCD, используем формулу для нахождения объема параллелепипеда V=h SABCD. С этой формулы видим:
    h=
    V
    SABCD
    =
    12
    2√(26)
    =
    6
    √(26)
    =
    3√(26)
    13
    .
  • г) Косинус угла λ1, между ребром AB и диагональю B1D будем высчитывать с помощью скалярного произведения векторов
    cos(λ1)=
    (AB B1D)
    |AB| * |B1D|
    .

    Координаты вектора AB мы имеем, от вектор B1D надо найти. Для этого используем следующую формулу:
    B1D = B1A1 + A1A + AD = — AB — AA1 + AD1 = — (4, 3, 0) — (-3, -2, 5) + (2, 1, 2); (Не забывайте, что всё это векторы, надо сложить их соответствующие координаты. )
    Сделав вычисления по этой формуле, мы найдём, что вектор B1D имеет координаты (1, 0, -3). Теперь надо найти длину векторов AB и B1D:
    |AB|=√(16+9+0)=5, |B1D|=√(1+0+9)=√(10).
    Найдём скалярное произведение векторов AB и B1D, (AB B1D)=4*1 + 3*0 + 0*(-3)=4.
    Теперь, имея все данные мы можем подставить их в нашу формулу:

    cos(λ1)=
    4
    5√(10)
    =
    2√(10)
    25
    .

    д) Что бы найти cos(λ2), мы используем то, что угол между двумя плоскостями равен углу между перпендикулярами до этих плоскостей. А как мы знаем, векторное произведение — это и есть перпендикуляр до плоскости перемножаемых векторов. Поэтому в роле перпендикуляра к плоскости ADD1A1 мы можем взять вектор [AD AA1], который мы нашли в пункте б), и знаем, что его координаты (9, -16, -1), точно также и для плоскости ABCD — вектор [AB AD] с координатами (6, -8, -2).
    Теперь нам остаётся, как в предыдущем варианте найти только косинус угла между двумя векторами, координаты которых нам известны.

    cos(λ2)=
    6*9 + (-8)*(-16) + (-2)*(-1)
    2√(26) * 13√(2)
    =
    46√(13)
    169
    .

    Вот таким не хитрым способом мы и нашли косинус угла между гранями ABCD и ADD1A1.

    Видео:Площадь треугольника, построенного на векторахСкачать

    Площадь треугольника, построенного на векторах

    Онлайн решение Пирамиды по координатам вершин

    1) чертёж пирамиды по координатам её вершин;

    2) длины и уравнения рёбер, медиан, апофем, высот;

    3) площади и уравнения граней;

    4) система линейных неравенств, определяющих пирамиду;

    5) основания и точка пересечения медиан (центроид);

    6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

    7) объём пирамиды;

    8) основания, площади и уравнения биссекторов;

    9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

    10) параметры и уравнения вписанной и описанной сфер;

    Внимание! Этот сервис может не работать в браузере Internet Explorer.

    Запишите координаты вершин пирамиды и нажмите кнопку.

    A ( ; ; ), B ( ; ; ),
    C ( ; ; ), D ( ; ; )

    Примечание: дробные числа записывайте
    через точку, а не запятую.

    Округлять до -го знака после запятой.

    Видео:Найдите площадь параллелограмма, построенного на векторахСкачать

    Найдите площадь параллелограмма, построенного на векторах

    Онлайн калькулятор. Объем пирамиды (объем тетраэдра) построенной на векторах.

    Этот онлайн калькулятор позволит вам очень просто найти объем пирамиды или объем тетраэдра построенных на векторах.

    Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление объема пирамиды построенной на векторах и закрепить пройденый материал.

    Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

    Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

    Калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах

    Как найти площадь грани тетраэдра построенного на векторах

    Выберите каким образом задается пирамида (тетраэдр):

    Введите значения векторов: Введите координаты вершин пирамиды:

    Инструкция использования калькулятора для вычисления объема пирамиды (объема тетраэдра) построенной на векторах

    Ввод данных в калькулятор для вычисления объема пирамиды (объема тетраэдра) построенной на векторах

    В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

    Дополнительные возможности калькулятора вычисления объема пирамиды (объема тетраэдра) построенной на векторах

    • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

    Видео:Решение, найдите объем тетраэдра, построенного на векторах a, b, c пример 10 Высшая математикаСкачать

    Решение, найдите объем тетраэдра, построенного на векторах a, b, c пример 10 Высшая математика

    Теория. Объем пирамиды (объем тетраэдра) построенной на векторах

    Как найти площадь грани тетраэдра построенного на векторах

    Определение Объем пирамиды (объем тетраэдра) построенной на векторах a , b и c равен шестой части модуля смешанного произведения векторов составляющих пирамиду:

    V =1| a ·[ b × c ]|
    6

    Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

    Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

    Добро пожаловать на OnlineMSchool.
    Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

    📺 Видео

    §20 Нахождение объёма параллелипипедаСкачать

    §20 Нахождение объёма параллелипипеда

    Найти площадь треугольника на векторахСкачать

    Найти площадь треугольника на векторах

    Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на граньСкачать

    Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на грань

    Решение, вычислить объем тетраэдра, построенного на векторах a, b, c пример 14 Высшая математикаСкачать

    Решение, вычислить объем тетраэдра, построенного на векторах a, b, c пример 14 Высшая математика

    Решение, найти площадь параллелограмма, построенного на векторах a и b пример 3. Высшая математика.Скачать

    Решение, найти площадь параллелограмма, построенного на векторах a и b пример 3. Высшая математика.

    Задача 4. Вычислить площадь параллелограмма, построенного на векторах.Скачать

    Задача 4. Вычислить площадь параллелограмма, построенного на векторах.

    Найти угол между векторами и площадь параллелограмма, построенного на этих векторахСкачать

    Найти угол между векторами и площадь параллелограмма, построенного на этих векторах

    Площадь параллелограмма по векторамСкачать

    Площадь параллелограмма по векторам

    Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольникаСкачать

    Высшая математика. 3 урок. Аналитическая геометрия. Вычисление площади треугольника

    Решение, вычислить площадь треугольника, построенного на векторах a=p−5q и b=2p+3q пример 19Скачать

    Решение, вычислить площадь треугольника, построенного на векторах a=p−5q и b=2p+3q пример 19

    Решение задач на векторное и смешанное произведения векторовСкачать

    Решение задач на векторное и смешанное произведения векторов
    Поделиться или сохранить к себе: