Как найти образ заданного вектора

Линейное отображение с примерами решения и образцами выполнения

Линейное отображение — обобщение линейной числовой функции, а точнее, функции на случай более общего множества аргументов и значений. Линейные отображения, в отличие от нелинейных, достаточно хорошо исследованы, что позволяет успешно применять результаты общей теории, так как их свойства не зависят от природы величин.

Как найти образ заданного вектора

Содержание
  1. Определение линейного отображения. Образ и ядро линейного отображения
  2. Примеры линейных отображений
  3. Матрица линейного оператора
  4. Собственные значения и собственные элементы
  5. Достаточность. Способ построения собственного элемента
  6. Сопряженный оператор
  7. Свойства операции сопряжения
  8. Симметричный оператор
  9. Свойства симметричного оператора
  10. Свойства положительного оператора
  11. Квадратичные формы
  12. Критерий Сильвестра (знакоположительное квадратичной формы)
  13. Метод Лагранжа
  14. Классификация кривых и поверхностей второго порядка
  15. Кривые
  16. Поверхности
  17. Дополнение к линейным отображениям
  18. Матрица линейного оператора примеры
  19. Построение матрицы по заданной формуле отображения.
  20. Матрица линейного оператора
  21. Примеры линейных операторов
  22. Действия над операторами
  23. 1. Понятие линейного оператора
  24. 2. Сложение линейных операторов
  25. 3. Умножение линейных операторов
  26. 4. Умножение линейного оператора на число
  27. 5. Нулевой оператор
  28. 6. Противоположный оператор
  29. 7. Ядро линейного оператора
  30. 8. Образ линейного оператора
  31. 9. Ранг линейного оператора
  32. Ядро и образ линейного отображения
  33. Примеры ядер и образов линейных отображений
  34. Свойства ядра и образа линейного отображения

Видео:Ядро и образ линейного оператораСкачать

Ядро и образ линейного оператора

Определение линейного отображения. Образ и ядро линейного отображения

Пусть V и W — линейные пространства (либо оба вещественные, либо оба комплексные). Линейным отображением линейного пространства V в линейное пространство W называется правило А, согласно которому каждому элементу х из пространства V ставится в соответствие (единственный) элемент у = Ах из пространства W так, что

Как найти образ заданного вектора

Эти два требования можно объединить в одно:

Как найти образ заданного вектора

Обозначение: A:VW.

Примеры линейных отображений

  1. Пусть V = W = Мп, где Мп — пространство многочленов, степень которых не выше п. Правило

Как найти образ заданного вектора

согласно которому каждому многочлену из Мп ставится в соответствие его производная, является линейным отображением (производная суммы равна сумме производных, постоянный сомножитель можно выносить из-под знака производной).

2. Правило, по которому каждому элементу х из V ставится в соответствие элемент λх из V ( λ ≠ 0 и фиксировано), — преобразование подобия — является линейным отображением (рис. 1).

Как найти образ заданного вектора

3. Пусть у = (еi…, еn) — базис пространства V. Поставим произвольному элементу

Как найти образ заданного вектора

в соответствие элемент

Как найти образ заданного вектора

(здесь k Как найти образ заданного вектора

4. Cовокупность Т2 тригонометрических многочленов вида

Как найти образ заданного вектора

образует линейное пространство. Правило

Как найти образ заданного вектора

является линейным отображением

Как найти образ заданного вектора

5. Пусть Как найти образ заданного вектора— фиксированная матрица, X — произвольный столбец высоты п. Умножение столбца X на матрицу А слева является линейным отображением пространства столбцов высоты п в пространство столбцов высоты m,

Как найти образ заданного вектора

Образом линейного отображения А: V → W называется множество im А всех элементов из пространства W, обладающих следующим свойством элемент у лежит в im А, если в пространстве V найдется элемент х, такой, что Ах = у. Примеры.

1′. Образом операции дифференцирования V : Мn — Мп является совокупность многочленов, степень которых не выше п — 1,

2′. Образ отображения подобия совпадает со всем пространством V.

3′. Образ отображения проектирования V : V → V является подпространством

Как найти образ заданного вектора

4′. Образ операции дифференцирования V : T2 → Т2 совпадает со всем пространством Т2

Теорема:

Образ im А линейного отображения А: V → W является линейным подпространством пространства W.

Пусть у1 и у2 — элементы из im А. Это означает, что в пространстве V найдутся элементы x1 и х2, такие, что -Ax1 = y1 и Ах2 = у2. Из формулы

Как найти образ заданного вектора

вытекает, что произвольная линейная комбинация элементов y1 и у2 также лежит в im А.

Размерность образа линейного отображения называется рангом этого линейного отображения.

Обозначение: rang А.

Определение:

Линейные отображения А: V → W и В: V W называются равными, если для любого элемента х из пространства V выполняется равенство Ах = Вх.

Обозначение: А = В.

Теорема:

Построение линейного отображения. Пусть V и W — линейные пространства, e = (e1… , еn) — базис пространства V, a f1. . ., fn — произвольные элементы из пространства W. Тогда существует и притом ровно одно линейное отображение

A :V → W,

Как найти образ заданного вектора

А. Существование. Разложим произвольный элемент х из пространства V по базису с этого пространства,

Как найти образ заданного вектора

и построим отображение А: V → W по следующему правилу:

Как найти образ заданного вектора

Как найти образ заданного вектора

В линейности отображения А убедимся непосредственно. Пусть

Как найти образ заданного вектора

Тогда согласно правилу (2)

Как найти образ заданного вектора

Б. Единственность. Покажем, что требованием (1) линейное отображение А определяется однозначно.

Пусть В: V → W — линейное отображение и

Как найти образ заданного вектора

Вычисляя действия А и В на произвольный элемент х из V, убеждаемся в том, что в обоих случаях результат один и тот же —

Как найти образ заданного вектора

Значит, отображения A и В совпадают.

Таким образом, линейное отображение можно задать его действием только на элементы базиса.

Ядром линейного отображения А: V → W называется множество ker А всех элементов из пространства V, каждый из которых отображение А переводит в нулевой элемент θw пространства W.

Как найти образ заданного вектора

Примеры:

1″. Многочлены нулевой степени образуют ядро операции дифференцирования V: Мп -> Мп.

2″. Ядро отображения подобия состоит из нулевого элемента θv пространства V.

3″. Ядром отображения проектирования P: V→V является линейное подпространство L(ek+1,…, еn) (рис. 3).

4″. Ядро операции дифференцирования D:T2→Т2 состоит из нуля.

5″. Ядром отображения

Как найти образ заданного вектора

является множество решений однородной линейной системы

АХ = 0.

Теорема:

Ядро линейного отображения А: V
W является линейным подпространством пространства V.

Из равенств Ах = θw и Ay = θw вытекает, что

Как найти образ заданного вектора

Размерность ядра линейного отображения называется дефектом этого отображения.

Обозначение: defect . Операции над линейными отображениям

Пусть V и W — линейные пространства и A:V W, B:V→W — линейные отображения. Суммой линейных отображений А и В называется отображение С: V→W, определяемое п о следующему правилу:

Сх = Ах + Вх

для любого элемента х из V. Нетрудно убедиться в том, что отображение С является линейным. В самом деле,

Как найти образ заданного вектора

Обозначение: С = А + В.

Произведением линейного отображения A:V→W на число а называется отображение В: V —> W, определяемое по правилу:

Вх = аАх

для любого элемента х из V. Отображение В линейно:

Как найти образ заданного вектора

Обозначение: В = а А.

В дальнейшем мы ограничимся рассмотрением линейных операторов — линейных отображений, действующих из пространства V в это же пространство V. Среди рассмотренных выше примеров отображений линейными операторами являются дифференцирование, подобие и проектирование; умножение столбца на квадратную матрицу также является линейным оператором.

Оператор I: V —> V, задаваемый правилом Ix = х для любого элемента х из V, называется тождественным.

Введем операцию умножения линейных операторов. Пусть А: V → V и В: V→V — линейные операторы. Произведением оператора А на оператор В называется отображение С: V → V, определяемое по правилу

Сх = В(Ах),

где х — произвольный элемент из V. Покажем, что С — линейный оператор:

Как найти образ заданного вектора

Обозначение: С = В А.

Замечание:

Порядок сомножителей в произведении линейных операторов является существенным, как показывает следующий пример.

Пример:

Пусть V = R 2 . Отображения

Как найти образ заданного вектора

— линейные операторы, действующие из R 2 в R 2 (рис. 4). Тогда

Как найти образ заданного вектора

Как найти образ заданного вектора

Пусть A: V → V — линейный оператор. Линейный оператор В: V → V называется обратным оператору А, если выполнены следующие равенства

ВА = АВ= I,

где I: V —> V — тождественный оператор.

Теорема:

Для того, чтобы у линейного оператора А: V → V был обратный, необходимо и достаточно, чтобы образ оператора А совпадал со всем пространством,

im А = V.

Предположим сначала, что обратный оператор В у заданного оператора А существует и покажем, что произвольно взятый элемент у из пространства V непременно лежит в im А. Подействовав оператором А на элемент х = В у, согласно определению (1), получим

Ах = А(Ву) = (АВ)у = Iу — у.

Значит, элемент у является образом элемента х = By и, следовательно, лежит в im А. Тем самым imA = V.

Как найти образ заданного вектора

Пусть теперь образ оператора А совпадает со всем пространством V:

imA = V.

rang А = dim V.

Поэтому оператор А переводит базис пространства V снова в базис:

Как найти образ заданного вектора

Как найти образ заданного вектора

Построим линейный оператор В по следующему правилу

Как найти образ заданного вектора

Согласно теореме 1, условием (2) оператор В определяется однозначно.

Пусть х — произвольный элемент пространства V. Вычислим (ВA)х и (АВ)х. Разложим х по базису с. Имеем

Как найти образ заданного вектора

Подействовав на него оператором В А, с учетом формул (2) получаем, что

Как найти образ заданного вектора

Аналогично, раскладывая элемент х по базису f,

Как найти образ заданного вектора

и действуя на него оператором АВ, имеем

Как найти образ заданного вектора

ВAх = х, АВх = х

для любого элемента х из V и, значит,

В А = АВ = I.

Замечание:

В ходе доказательства этой теоремы мы установили также, что обратный к А оператор В определен однозначно.

Для оператора, обратного к А, принято следующее обозначение: А -1 .

Следствие:

Линейный оператор А: VV обратим (имеет обратный) тогда и только тогда, когда его ядро тривиально,

ker А= < θ v>.

Справедливость этого утверждения вытекает из теоремы 3 и формулы.

Как найти образ заданного вектора

Пример:

Как найти образ заданного вектора

осуществляет равномерное сжатие плоскости к оси ξ 1 (с коэффициентомКак найти образ заданного вектора); обратный оператор

Как найти образ заданного вектора

— равномерное растяжение (с коэффициентом 3/2) (рис. 5).

Матрица линейного оператора

Пусть линейный оператор А: V —> V преобразует элементы базиса e = (e1,…, еn) пространства V по следующему правилу

Как найти образ заданного вектора

Как найти образ заданного вектора

столбцами которой являются координаты образов базисных элементов, называется матрицей линейного оператора А в базисе e.

Пример:

Матрица D(с) оператора дифференцирования V: Мз → Mз в базисе ео = l. e1 = t, Как найти образ заданного вектораимеет вид

Как найти образ заданного вектора

Пример:

Матрица D(e) оператора дифференцирования V: T2 → T2 в базисе e1 = cos t, е2 = sin t имеет вид

Как найти образ заданного вектора

Как найти образ заданного вектора

У = Ax.

Разложим элементы x и у no базису e:

Как найти образ заданного вектора

Как найти образ заданного вектора

элементов х и у в базисе с связаны соотношением

у(e) = A(e)х(e). (1)

Как найти образ заданного вектора

в силу единственности разложения элемента у по базису e получаем

Как найти образ заданного вектора

Записывая полученные п равенств в матричной форме

Как найти образ заданного вектора

получаем требуемое равенство (1).

Теорема:

Ранг матрицы А(с) линейного оператора А: V —> V не зависит от выбора базиса с и равен рангу rang А оператора А.

Как найти образ заданного вектора

то rang A равен максимальному числу линейно независимых элементов в системе Ае1,…, Аеn. В силу теоремы 4 главы V, последнее совпадает с максимальным числом линейно независимых столбцов матрицы А(e), т. е. с ее рангом. Таким образом,

rang А(с) = rang A.

Легко убедиться в том, что при сложении линейных операторов их матрицы (вычисленные в одном базисе) складываются, а при умножении линейного оператора на число его матрица умножается на это число.
Матрица произведения С = ВА операторов А и B равна произведению матриц этих операторов (относительно одного и того же базиса e):

С(e) = В(e)А(e). (2)

Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектора

Вследствие того, что Как найти образ заданного вектораиз формул (3) и (4) получаем

С (e) = В(e)А(e).

Отсюда, в частности, вытекает, что

матрица оператора A -1 , обратного к A, является обратной к его матрице А.

В самом деле, из соотношений

Как найти образ заданного вектора

определяющих обратный оператор, получаем, что его матрица В удовлетворяет равенствам

ВА = I, АВ = I,

и, значит, является обратной к А:

В = A -1 .

Теорема:

Матрицы А = А(е) и А’ = А(е’) линейного оператора А: V → V относительно базисов с и с’ пространства V связаны равенством

Как найти образ заданного вектора

где S — матрица перехода от базиса е к базису е’.

Пусть у = Ах. Координатные столбцы элементов х и у относительно базисов с и с’ связаны равенствами

у(е) = Ах (е), у(е’) = А’х(е’) (6)

соответственно. Согласно свойству 2 матрицы перехода имеем

х(е) = Sx(c’), у(е) = Sy(е’). (7)

Заменяя в первом из равенств (6) столбцы х(е) и у(е) их выражениями (7), получаем

Sy(е’) = ASx(е’).

Пользуясь вторым равенством (6), имеем

SA’x(е’) = ASx(е’).

Отсюда в силу произвольности столбца х(е’) получаем, что

SA’ = AS.

Так как матрица перехода S невырождена и, значит, обратима, то умножая обе части последнего равенства на матрицу S -1 слева приходим к требуемой формуле (5).

Следствие:

Определитель матрицы линейного оператора не зависит от выбора базиса.

Вычислим определитель матрицы

Как найти образ заданного вектора

Как найти образ заданного вектора

Последнее равенство выполняется в силу того, что

Как найти образ заданного вектора

Таким же свойством обладает и определитель матрицы линейного оператора

А — tI,

где I — тождественный оператор, a t — произвольное число. * Рассмотрим матрицы этого оператора в базисах e и e’ соответственно:

Как найти образ заданного вектора

Воспользовавшись равенством (5)

Как найти образ заданного вектора

и доказанным выше следствием, получаем, что

Как найти образ заданного вектора

Пусть Как найти образ заданного вектора— матрица линейного оператора A в каком-нибудь базисе. Функция

Как найти образ заданного вектора

является многочленом от t и, согласно только что доказанному, не зависит от выбора базиса. Расписав определитель матрицы А — t1 подробнее, получаем, что

Как найти образ заданного вектора

Как найти образ заданного вектора

называется характеристическим многочленом линейного оператора А (матрицы А). Его корни называются характеристическими, или собственными, числами линейного оператора А (матрицы А).

Видео:Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

Собственные значения и собственные элементы

Ненулевой элемент х ∈ V называется собственным элементом линейного оператора А: V —> V, если найдется такое число λ — собственное значение линейного оператора А, что

Ах = λх.

Пример:

Всякий многочлен нулевой степени является собственным элементом оператора дифференцирования

Как найти образ заданного вектора

соответствующее собственное значение равно нулю:

Как найти образ заданного вектора

Пример:

Оператор дифференцирования собственных элементов не имеет.

Как найти образ заданного вектора

Пусть некоторый тригонометрический многочлен a cos t + β sin t после дифференцирования переходит в пропорциональный:

Как найти образ заданного вектора

Это означает, что

Как найти образ заданного вектора

Как найти образ заданного вектора

Последнее равенство выполняется в том и только в том случае, если

Как найти образ заданного вектора

откуда вытекает, что а = β = 0 и, значит, многочлен может быть только нулевым.

Теорема:

Вещественное число λ является собственным значением линейного оператора А в том и только в том случае, когда это число — корень его характеристического многочлена: х( λ ) = 0.
Необходимость, Пусть λ — собственное значение оператора А. Тогда найдется ненулевой элемент х, для которого Ах = λх.

Пусть е = (е1 …, еп) — базис пространства. Тогда последнее равенство можно переписать в эквивалентном матричном виде

Как найти образ заданного вектора

Как найти образ заданного вектора

Из того, что х — собственный элемент, вытекает, что его координатный столбец х(е) ненулевой. Это означает, что линейная система (1) имеет ненулевое решение. Последнее возможно лишь при условии, что

Как найти образ заданного вектора

x (λ) = у.

Достаточность. Способ построения собственного элемента

Пусть λ — корень многочлена т- е-

Как найти образ заданного вектора

Рассмотрим однородную линейную систему с матрицей А(е) — λ1:

Как найти образ заданного вектора

Как найти образ заданного вектора

В силу условия (2) эта система имеет ненулевое решение Как найти образ заданного вектора.

Построим элемент х по правилу

Как найти образ заданного вектора

Координатный столбец х(е) этого элемента удовлетворяет условию

Как найти образ заданного вектора

Как найти образ заданного вектора

Последнее эквивалентно тому, что

Ах = λх.

Следовательно, х — собственный элемент линейного оператора λ, а А — соответствующее ему собственное значение.

Замечание:

Для нахождения всех собственных элементов, отвечающих заданному собственному значению λ, необходимо построить ФСР системы (3).

Пример:

Найти собственные векторы линейного оператора

Как найти образ заданного вектора

действующего по правилу

Как найти образ заданного вектора

(оператор проектирования) (рис.6).

Как найти образ заданного вектора

Рассмотрим действия линейного оператора Р на базисные векторы. Имеем

Как найти образ заданного вектора

Запишем матрицу оператора:

Как найти образ заданного вектора

построим характеристический многочлен

Как найти образ заданного вектора

и найдем его корни. Имеем λ1 = λ2,з = 1. Построим однородные линейные системы с матрицами:

Как найти образ заданного вектора

Как найти образ заданного вектора

Найдем фундаментальные системы решений для каждой из этих систем. Имеем

Как найти образ заданного вектора

Таким образом, собственными векторами этого оператора проектирования являются: вектор к с собственным значением 0 и любой вектор Как найти образ заданного векторас собственным значением 1.

Пример:

Найти собственные элементы линейного оператора дифференцирования D, действующего в пространстве M3 многочленов степени не выше двух:

Как найти образ заданного вектора

Матрица D заданного оператора в базисе I, t, t 2 имеет вид

Как найти образ заданного вектора

характеристический многочлен — λ 3 имеет ровно один корень λ = 0. Решением системы

Как найти образ заданного вектора

является набор 1,0,0, которому соответствует многочлен нулевой степени.

Видео:Собственные векторы и собственные значения матрицыСкачать

Собственные векторы и собственные значения матрицы

Сопряженный оператор

В евклидовом пространстве над линейными операторами можно ввести еще одно действие — операцию сопряжения.

Пусть V — n-мерное евклидово пространство. С каждым линейным оператором

A: V → V,

действующим в этом пространстве; естественно связан другой линейный оператор, сопряженный данному.

Определение:

Л*: V → V

(читается: «а со звездой») называется сопряженным линейному оператору А: V → , если для любых элементов х и у из пространства V выполняется равенство

(Ах, у) = (х, A*у). (1)

Линейный оператор А*, сопряженный данному оператору А, всегда существует.

Пусть e = (e1…..еn) — ортобазис пространства V и А = А(e) = Как найти образ заданного вектора— матрица линейного оператора А в этом базисе, т. е.

Как найти образ заданного вектора

Непосредственными вычислениями можно убедиться в том, что для линейного оператора А*: V —> V, определяемого по правилу

Как найти образ заданного вектора

Как найти образ заданного вектора

равенство (1) выполнено при любых х и у. Напомним. что согласно теореме 1, для того, чтобы построить линейный оператор, достаточно задать его действие на базисные элементы.

Пример:

Введем в линейном пространстве М многочленов с вещественными коэффициентами степени не выше первой операцию скалярного умножения по следующему правилу. Пусть

Как найти образ заданного вектора

Как найти образ заданного вектора

Тем самым, М1 — двумерное евклидово пространство.

Пусть D: М1 — М1 — оператор дифференцирования-. D(a + bt) = b. Построим сопряженный оператор D*: М1 → М1.

Многочлены l и t образуют ортобазис пространства Af (, так как согласно правилу (*) (1. 1) = (t, t) = 1. (l, t) = 0. Матрица оператора D в этом базисе имеет вид

Как найти образ заданного вектора

т.к. D(1) = 0, D(t) = 1. Тогда

Как найти образ заданного вектора

— матрица сопряженного оператора D* действующего по правилу:

D*(l)=l, D*(t)=0.

Для произвольного многочлена φ(t) = а +bt получаем

Как найти образ заданного вектора

Свойства операции сопряжения

  1. У каждого линейного оператора существует ровно один сопряженный ему оператор.

Пусть В и С — операторы, сопряженные заданному оператору A. Это означает, что для любых элементов х и у из пространства V выполняются равенства

(Ах, у) = (х, By), (Ах, у) = (х, Су).

Отсюда вытекает, что

(х, Ву)=(х, Су)

(х, By — Су) = 0.

В силу произвольности выбора элемента х заключаем, что элемент Ву-Су ортогонален любому элементу пространства V и, в частности, себе самому. Последнее возможно лишь в случае, когда By — Су = θ и, значит, By = Су. Вследствие того, что у — произвольный элемент, получаем В = С.

2. (аA)* = аA*, где а — произвольное вещественное число.

Пусть A: V —> V н B: V → V — линейные операторы. Тогда

Свойства 2-5 легко вытекают из единственности сопряженного оператора.

6. Пусть e — ортобазис пространства V. Для того, чтобы операторы А: V —> V и В: V —> V были взаимносопряженными, т.е. выполнялись равенства В = А, А= В, необходимо и достаточно, чтобы их матрицы А = А(e) и В = В(e) получались одна из другой транспонированием.

Замечание:

Подчеркнем, что свойство 6 справедливо только для матриц, построенных в ортонормиро-ванном базисе. Для произвольного базиса оно неверно.

7. Если линейный оператор А невырожден, то сопряженный ему оператор А* также невырожден и выполняется равенство

Как найти образ заданного вектора

Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

Нахождение длины вектора через координаты. Практическая часть. 9 класс.

Симметричный оператор

Линейный оператор А называется самосопряженным (или симметричным), если он совпадает с сопряженным ему оператором А*, т. е.

А* = А.

В силу свойства 6 из предыдущего параграфа матрица самосопряженного оператора в ортобазисе симметрична, т. е. не изменяется при транспонировании. Поэтому самосопряженный оператор называют также симметричным оператором.

Как найти образ заданного вектора

Пример:

Рассмотрим оператор Р ортогонального проектирования трехмерного евклидова пространства Oxyz на координатную плоскость Оху (рис. 7). В ортобазисе i,j,k матрица этого оператора имеет следующий вид

Как найти образ заданного вектора

(так как Рi = i, Рj = j, Pk = θ, т. е. является симметричной. Значит, оператор проектирования P симметричен.
Симметричный оператор обладает рядом замечательных свойств.

Свойства симметричного оператора

Первые два вытекают из его определения.

  1. Для того, чтобы линейный оператор А: V → V был симметричным, необходимо и достаточно, чтобы для любых элементов х и у из пространства V выполнялось равенство
    (Ах, У) = (х, Aу). (6)
  2. Для того, чтобы линейный оператор был симметричен, необходимо и достаточно, чтобы его матрица в (каком-нибудь) ортонормированном базисе была симметрична.
  3. Характеристический многочлен симметричного оператора (и симметричной матрицы) имеет только вещественные корни.

Напомним, что вещественный корень λ характеристического многочлена линейного оператора А является его собственным значением, т.е. существует ненулевой элемент х (собственный вектор оператора А), который оператор А преобразует так: Ах = λх.

4. Собственные элементы симметричного оператора, отвечающие различным собственным значениям, ортогональны.

Пусть x1 и х2 — собственные элементы оператора А,

Как найти образ заданного вектора

И Как найти образ заданного вектора. В силу симметричности оператора имеем

Как найти образ заданного вектора

С другой стороны,

Как найти образ заданного вектора

Из вытекающего отсюда равенства

Как найти образ заданного вектора

Как найти образ заданного вектора

Отсюда в силу неравенства Как найти образ заданного вектораимеем

Как найти образ заданного вектора

5. Пусть А: V —> V — симметричный оператор. Тогда в пространстве V существует ортонормированный базис е = (е1,… ,еп), состоящий из собственных элементов оператора А:

Как найти образ заданного вектора

В приведенном выше примере таким базисом является тройка i, j, к: векторы i и j — собственные векторы оператора проектирования Р с собственными значениями, равными единице, а к — его собственный вектор с нулевым собственным значением.

6. Пусть А: V —» V — невырожденный симметричный оператор. Тогда обратный ему оператор А -1 : V —> V также является симметричным.

Замечание:

Все собственные значения невырожденного оператора отличны от нуля. Если λ ≠ 0 — собственное значение оператора А, то Как найти образ заданного вектора— собственное значение обратного оператора А -1 .

Симметричный оператор называется положительным, если для любого ненулевого элемента х из пространства V выполняется неравенство (Ах, х) > 0.

Свойства положительного оператора

  1. Симметричный оператор А: V —» V является положительным в том и только в том случае, когда все его собственные значения λ1…, λп положительны.
  2. Положительный оператор невырожден (обратим).
  3. Оператор, обратный положительному, также положителен.

Видео:Как разложить вектор по базису - bezbotvyСкачать

Как разложить вектор по базису - bezbotvy

Квадратичные формы

Пусть А = (aij) — симметричная матрица порядка п, ajj = Выражение
(1)

Как найти образ заданного вектора

называется квадратичной формой переменных Как найти образ заданного вектора. Матрица А называется матрицей этой квадратичной формы.

Примером квадратичной формы двух переменных х и у может служить выражение ах2 + 2bху + су2, где а, b и с — некоторые действительные числа; ее матрица

Как найти образ заданного вектора

Набор чисел Как найти образ заданного вектораможно рассматривать как координаты элемента п-мерного евклидова пространства V в некотором фиксированном ортобазисе e = (e1,…, еn) этого пространства,

Как найти образ заданного вектора

Тогда выражение (1) будет представлять собой числовую функцию аргумента х, заданную на всем пространстве V. Эту функцию принято обозначать так: A(х, х). О такой квадратичной форме
(2)

Как найти образ заданного вектора

говорят, что она задана в n-мерном евклидовом пространстве

Со всякой квадратичной формой A(x, x) естественно связана симметричная билинейная форма
(3)

Как найти образ заданного вектора

где Как найти образ заданного вектора— координаты элемента у в ортобазисе e:

Как найти образ заданного вектора

Замечание:

Форма (3) называется билинейной, так как она линейна по каждому аргументу — и по х, и по у :

Как найти образ заданного вектора

(здесь a1, a2, β1, β2 — произвольные числа).

Билинейная форма (3) называется симметричной вследствие того, что ее значение не зависит от порядка аргументов,

Вычисляя значения билинейной формы A (x, у) на базисных элементах, т. е. полагая х = еk, у = ет, получаем, что (4)

Как найти образ заданного вектора

Это означает, что элементы матрицы А квадратичной формы (2) суть значения билинейной формы на элементах базиса с.

Примером билинейной формы может служить скалярное произведение векторов n-мерного координатного пространства Rn

Как найти образ заданного вектора

где Как найти образ заданного вектораСоответствующая квадратичная форма

Как найти образ заданного вектора

определяет квадрат длины вектора ξ.

При переходе к другому базису координаты элемента х изменяются. Меняется и матрица А = А(e) квадратичной формы.

В приложениях часто возникает необходимость приведения квадратичной формы к наиболее простому виду. Таким видом является диагональный, или нормальный вид. Будем говорить, что квадратичная форма в базисе с имеет нормальный вид, если все коэффициенты при произведениях различных координат равны нулю, т.е. аij = 0 при i ≠ j. Тогда

Как найти образ заданного вектора

Матрица квадратичной формы в этом базисе имеет диагональный вид:

Как найти образ заданного вектора

Теорема:

Для каждой квадратичной формы, заданной в евклидовом пространстве, можно указать (ортонормированный) базис, в котором ее матрица имеет диагональный вид.
Чтобы убедиться в справедливости этого утверждения, воспользуемся свойствами симметричного оператора. Построим линейный оператор А: V → V так, чтобы его матрица Как найти образ заданного векторав базисе е совпадала с матрицей (aij) квадратичной формы в этом же базисе е, т.е. положим Как найти образ заданного вектора= aij. В силу симметричности матрицы Как найти образ заданного вектораоператор А симметричен.’

Вычислим (Aх, х). Замечая, что

Как найти образ заданного вектора

вследствие ортонормированности базиса e, получаем

Как найти образ заданного вектора

Тем самым, м ы установили важную связь

A(х, х) = (Aх, х) (5)

между квадратичной формой, заданной в евклидовом пространстве V, и действующим в нем симметричным оператором.

В силу симметричности построенного оператора А в евклидовом пространстве V существует ортонормированный базис f = (f1,… ,fn) состоящий из собственных элементов оператора А:

Как найти образ заданного вектора

Как найти образ заданного вектора

Разложим элемент х по базису f,

Как найти образ заданного вектора

и вновь вычислим (Aх, х). Имеем

Как найти образ заданного вектора

Отсюда в силу равенства (5) получаем, что

Как найти образ заданного вектора

Тем самым, матрица A(f) исходной квадратичной формы в базисе f является диагональной:

Как найти образ заданного вектора

Сам диагональный вид квадратичной формы можно (с точностью до порядка слагаемых) записать и не вычисляя элементов базиса f. Достаточно найти собственные значения линейного оператора А или, что тоже самое, собственные значения матрицы А = (aij) и выписать их с учетом кратности.

Пример:

Привести квадратичную форму

A(х, х) = 2ху + 2yz + 2xz

к диагональному виду.
Запишем матрицу квадратичной формы

Как найти образ заданного вектора

и построим ее характеристический многочлен:

Как найти образ заданного вектора

Приравняв полученное выражение к нулю, найдем его корни:

Как найти образ заданного вектора

Как найти образ заданного вектора

Построение соответствующего ортобазиxа сложнее.

Собственные векторы симметричного оператора А суть собственные векторы матрицы квадратичной формы. Найдем их.

Пусть λ = 2. Рассмотрим однородную линейную систему с матрицей

Как найти образ заданного вектора

Все решения системы

Как найти образ заданного вектора

пропорциональны набору (1 1 1 ) т.

Пусть λ = — I. Однородная линейная система с матрицей

Как найти образ заданного вектора

сводится к одному уравнению

х + y + z = 0

и имеет два линейно независимых решения. Выберем их так, чтобы они были ортогональны: (1 -2 1 )Т, (1 0 — 1 )Т. Легко убедиться в том, что векторы с найденными координатными столбцами попарно ортогональны. Пронормируем их:

Как найти образ заданного вектора

Искомый базис построен:

Как найти образ заданного вектора

Замечание:

В качестве пространства V можно взять любое п-мерное евклидово пространство. Однако в задачах наиболее часто встречается координатное пространство Rn, элементами которого являются всевозможные упорядоченные наборы действительных чисел — ξ = (Как найти образ заданного вектора), стандартный базис состоит из наборов (1,0,…, 0,0), (0,1…..0,0),… , (0,0,….,), 0), (0,0…..0, I), а скалярное произведение наборов ξ = (Как найти образ заданного вектора) и η = (Как найти образ заданного вектора) определяется формулой

Как найти образ заданного вектора

Опишем алгоритм, посредством которого для произвольной квадратичной формы, заданной в n-мерном координатном пространстве, строится базис, в котором эта квадратичная форма имеет диагональный вид.

Как найти образ заданного вектора

— заданная квадратичная форма.

  1. Выпишем матрицу квадратичной формы

Как найти образ заданного вектора

2. Построим характеристический многочлен

Как найти образ заданного вектора

и найдем его корни (в силу симметричности матрицы все корни вещественны). Запишем их с учетом кратности:

Как найти образ заданного вектора

3. Пусть λ — один из этих корней, кратности k. Однородная линейная система с матрицей

Как найти образ заданного вектора

имеет ровно к линейно независимых решений (образующих фундаментальную систему решений). Ортонормировав ее, получим к попарно ортогональных решений единичной длины.

4. Поступая так с каждым корнем характеристического многочлена, получаем набор ровной попарно ортогональных элементов единичной длины, т. с. ортобазис f1 …, fn пространства Rn.

В построенном ортобазисе f = (f1,…,fn) заданная квадратичная форма имеет диагональный вид:

Как найти образ заданного вектора

Как найти образ заданного вектора

Определение:

Как найти образ заданного вектора

называется положительно определенной или знакоположительной, если для любого ненулевого элемента х (или, что то же, для любого ненулевого набора Как найти образ заданного вектора, выполняется неравенство

A(х, х) > 0.

Примером знакоположительной квадратичной формы может служить скалярный квадрат произвольного вектора ξ = (Как найти образ заданного вектора) координатного пространства:

Как найти образ заданного вектора

После приведения знакоположительной квадратичной формы к диагональному виду получаем

Как найти образ заданного вектора

где λ1 > 0, …, λn > 0

Критерий Сильвестра (знакоположительное квадратичной формы)

Для того, чтобы квадратичная форма (6) была знакоположительной, необходимо и достаточно, чтобы все миноры ее матрицы, расположенные в левом верхнем углу, были положительны, т. е.

Как найти образ заданного вектора

Метод Лагранжа

Существует еще один (простой) метод приведения квадратичной формы к диагональному виду, удобный, например, при получении ответа на вопрос, является ли квадратичная форма знакоопределенной или нет. Этот метод Лагранжа, или метод выделения полного квадрата, заключается в следующем. Пусть

Как найти образ заданного вектора

— заданная квадратичная форма и a11 ≠ 0. Выпишем сначала все слагаемые, содержащие переменную ξ 1 и преобразуем их так:

Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектора

Замечая, что выражение

Как найти образ заданного вектора

также является квадратичной формой, но уже зависящей от меньшего числа переменных, вновь выделяем полный квадрат и т.д.

Если a11 = 0, но отлично от нуля аii(2 Как найти образ заданного вектора

В результате проведенного преобразования координат, в частности, получим

Как найти образ заданного вектора

И, тем самым, придем к общему случаю.

Пример:

Методом Лагранжа привести к диагональному виду квадратичную форму

A(x, х) = 2ху + 2yz + 2zx.

Введем новые координаты Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектора

Замечание:

Недостаток метола Лагранжа состоит в том, что при указанных преобразованиях координат новые координатные оси уже не являются попарно ортогональными.

Существуют и другие способы приведения квадратичной формы к диагональному виду.

Сравнивая результаты описанных выше двух способов приведения квадратичной формы 2ху + 2yz + 2zx к диагональному виду (речь идет о последних двух разобранных примерах), можно заметить, что в них соответственно одинаковы: число отрицательных коэффициентов и число положительных коэффициентов. Это совпадение не случайно, а является важным свойством квадратичных форм, называемым законом инерции:

число положительных, число отрицательных и число нулевых коэффициентов при квадратах неизвестных в диагональном виде квадратичной формы всегда одни и те же и не зависят от способа приведения квадратичной формы к этому виду.

Видео:Собственные значения и собственные векторы матрицы (4)Скачать

Собственные значения и собственные векторы матрицы (4)

Классификация кривых и поверхностей второго порядка

Применим описанный выше алгоритм приведения квадратичной формы к диагональному виду для классификации кривых и поверхностей второго порядка.

Кривые

Рассмотрим общее уравнение кривой второго порядка на плоскости Оху :

Как найти образ заданного вектора

Построим матрицу квадратичной части ах2 + 2bху+су2:

Как найти образ заданного вектора

Найдем корни λ1 и λ2 характеристического многочлена и соответствующие им собственные векторы i и j (единичные и взаимноортогональные).. Возьмем эти векторы за орты новых осей Ох и Оу (рис. 8).

Как найти образ заданного вектора

Переходя к новым координатам Как найти образ заданного вектора, получим

Как найти образ заданного вектора

Возможны два случая: 1) λ1 • λ2 ≠ 0, 2) λ1 (или λ2 ) равно нулю.

В первом случае сдвигом точки начала отсчета

Как найти образ заданного вектора

добиваемся исчезновения линейных членов

Как найти образ заданного вектора

Далее, как это и делалось, рассматриваем всевозможные сочетания знаков у коэффициентов λ1, λ2 и f. В результате получаем: эллипс, гиперболу, пару пересекающихся прямых, точку, пустое множество.

Во втором случае (положим для определенности λ1 = 0, λ2 ≠ 0) сдвигом начала отсчета

Как найти образ заданного вектора

Как найти образ заданного вектора

приходим к уравнению

Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектора

Если же d= 0,то взяв а = 0, имеем

Как найти образ заданного вектора

В зависимости от знака Как найти образ заданного вектораполучаем: пару параллельных прямых, пару совпадающих прямых, пустое множество.

Замечание:

Операция отыскания корней характеристического многочлена квадратичной части уравнения кривой и взаимноортогональных единичных собственных векторов, описанная здесь, заменяет уничтожение произведения разноименных координат путем поворота на подходящий угол. В случае поверхностей второго порядка дело обстоит сложнее (и для того, чтобы разобраться с классификацией до конца, нужны и внимание и терпение).

Поверхности

Общее уравнение поверхности второго порядка имеет следующий вид

Как найти образ заданного вектора

Упростим вид квадратичной части этого уравнения (подчеркнута), пользуясь описанным выше алгоритмом. Построим матрицу

Как найти образ заданного вектора

найдем корни λ1, λ2, λз характеристического многочлена

Как найти образ заданного вектора

и соответствующие им собственные векторы i, J, k так, чтобы они образовывали ортонормированную тройку (это всегда возможно). Возьмем векторы i, J и k за орты новых координатных осей Ox, Ox, Oz. Производя замену координат, получим (*)

Как найти образ заданного вектора

Возможны три случая:

(I) Все три корня λ1, λ2, λ3 отличны от нуля. Путем сдвига начала

Как найти образ заданного вектора

уравнение (*) поверхности приводится к следующему виду

Как найти образ заданного вектора

Как найти образ заданного вектора

имеют один и тот же знак, противоположный знаку Как найти образ заданного вектора.

Как найти образ заданного вектора

получаем уравнение эллипсоида

Как найти образ заданного вектора

β ) Знаки λ1 и λ2 противоположны знаку Как найти образ заданного вектора, а знаки A3 и Как найти образ заданного векторасовпадают. Полагая

Как найти образ заданного вектора

получаем уравнение однополостного гиперболоида

Как найти образ заданного вектора

γ ) Знаки λ1 и λ2 совпадают со знаком Как найти образ заданного вектора, а знаки λ3 и Как найти образ заданного векторапротивоположны. Полагая

Как найти образ заданного вектора

получаем уравнение двуполостного гиперболоида

Как найти образ заданного вектора

б. Как найти образ заданного вектора= 0.

а) Если λ1, λ2 и λз имеют один и тот же знак, то получаем точку (0, 0, 0).

β) Если одно из λ, имеет знак, противоположный знаку двух других, то получаем уравнение конуса второго порядка

Как найти образ заданного вектора

(II) Ровно один корень равен нулю (для определенности λз = 0). Полагая

Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектораТогда сдвигом точки начала отсчета

Как найти образ заданного вектора

получаем уравнение вида

Как найти образ заданного вектора

а) Если λ1 и λ2 — одного знака, то, полагая

Как найти образ заданного вектора

(можно считать, что знак Как найти образ заданного векторапротивоположен знаку λ1 и λ2; этого всегда можно добиться, поменяв в случае необходимости ориентацию оси z на противоположную), получаем уравнение эллиптического параболоида

Как найти образ заданного вектора

β) Если λ1 и λ2 имеют противоположные знаки, то, положив

Как найти образ заданного вектора

получим уравнение гиперболического параболоида

Как найти образ заданного вектора

б. Как найти образ заданного вектора=0. Тогда уравнение поверхности имеет следующий вид

Как найти образ заданного вектора

Классификация поверхностей с уравнениями такого типа приводится в таблице.

Замечание:

Отсутствие третьей координаты (точнее, ее неявное присутствие) приводит к цилиндрическим поверхностям, направляющими которых являются кривые второго порядка, лежащие в плоскости Z = 0 и имеющие уравнения вила

Как найти образ заданного вектора

Как найти образ заданного вектора

(III) Ровно два корня равны нулю (для определенности λ2 = λ3 = 0). Преобразованием координат

Как найти образ заданного вектора

приходим к уравнению

Как найти образ заданного вектора

Как найти образ заданного вектораПокажем, что этот случай всегда можно свести к такому: Как найти образ заданного вектора, Как найти образ заданного вектора= 0. Преобразованием координат

Как найти образ заданного вектора

уравнение поверхности приводится к следующему виду

Как найти образ заданного вектора

Как найти образ заданного вектора

Замечание:

Преобразование координат, упрощающее вид уравнения, выбирается так, чтобы новая координатная система вновь была прямоугольной декартовой.

Сдвигом начала координат

Как найти образ заданного вектора

получаем уравнение параболического цилиндра

Как найти образ заданного вектора

Как найти образ заданного вектора

Как найти образ заданного вектора

описывает либо пару параллельных плоскостей ( λ1 • Как найти образ заданного вектора0).

Видео:Образ линейного оператора. ПримерСкачать

Образ линейного оператора. Пример

Дополнение к линейным отображениям

Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Как найти образ заданного вектора

Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора Как найти образ заданного вектора

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Видео:Собственные значения и собственные векторыСкачать

Собственные значения и собственные векторы

Матрица линейного оператора примеры

Видео:Координаты в новом базисеСкачать

Координаты в новом базисе

Построение матрицы по заданной формуле отображения.

Пусть отображение задано с помощью формулы:

Как найти образ заданного вектора

то есть для координат произвольного исходного вектора определены координаты его образа. Тогда, рассматривая вместо произвольного вектора x вектор Как найти образ заданного вектора, найдём его образ, это будет вектор Как найти образ заданного вектора. Для этого в формуле, задающей образ вектора, полагаем Как найти образ заданного вектора, Как найти образ заданного вектора,…, Как найти образ заданного вектора. Аналогично находим образы для Как найти образ заданного вектора,…, Как найти образ заданного вектора. Из координат образа вектора Как найти образ заданного векторасоставляем 1-й столбец матрицы линейного оператора, аналогично из координат последующих векторов – остальные столбцы. Рассмотрим на примере.

Пример 1. Пусть оператор задан с помощью формулы:

Как найти образ заданного вектора.

Прежде всего, докажем, что это отображение – действительно линейный оператор.

Отобразим сумму векторов:

Как найти образ заданного вектораТеперь каждую координату получившегося вектора можем преобразовать:

Как найти образ заданного вектораКак найти образ заданного вектора

Как найти образ заданного вектораКак найти образ заданного вектора.

Аналогично для умножения на константу:

Как найти образ заданного вектора

Как найти образ заданного вектора

Для того чтобы найти матрицу этого линейного оператора, нужно, как было сказано выше, подставить значения x1 = 1, x2 = 0, а затем x1 = 0, x2 = 1. В этом примере образы базисных векторов – соответственно (3, 1) и (2, -1).

Поэтому матрица линейного оператора будет иметь вид:

Как найти образ заданного вектора.

Аналогичным способом решается задача и для 3 и большего количества переменных.

Пример 2. Как найти образ заданного вектора.

Построим матрицу оператора. Отображая вектор (1,0,0), получаем (1,4,-1), соответственно (0,1,0) переходит в (2,1,-2), а вектор (0,0,1) – в (-1,1,3).

Матрица линейного оператора:

Как найти образ заданного вектора.

2.2. Построение матрицы оператора в случае, когда известен исходный базис и система векторов, в которую он отображается.

Если задана система Как найти образ заданного вектораиз n векторов, образующих базис, и какая-нибудь произвольная система n векторов Как найти образ заданного вектора(возможно, линейно-зависимая), то однозначно определён линейный оператор, отображающий каждый вектор первой системы в соответствующий вектор второй системы.

Матрицу этого оператора можно найти двумя способами: с помощью обратной матрицы и с помощью системы уравнений.

Пусть Как найти образ заданного вектора– матрица оператора в базисе Как найти образ заданного вектора. По условию, Как найти образ заданного векторадля всех индексов Как найти образ заданного вектора. Данные n равенств можно записать в виде одного матричного равенства: Как найти образ заданного вектора, при этом столбцы матрицы Как найти образ заданного вектора– это векторы Как найти образ заданного вектора, а столбцы матрицы Как найти образ заданного вектора– векторы Как найти образ заданного вектора. Тогда матрица Как найти образ заданного вектораможет быть найдена в виде Как найти образ заданного вектора.

Пример. Найти матрицу линейного оператора, отображающего базис

Как найти образ заданного векторав систему векторов Как найти образ заданного вектора.

Здесь Как найти образ заданного вектора, Как найти образ заданного вектора, Как найти образ заданного вектора, и получаем:

Как найти образ заданного вектора.

Проверка осуществляется умножением получившейся матрицы на каждый вектор: Как найти образ заданного вектора.

Аналогично решаются подобные задачи и для трёхмерного пространства. В приложении (§5) есть несколько вариантов таких задач.

2.3. Прочие способы нахождения матрицы оператора.

Существуют также примеры, где линейный оператор задаётся другими способами, отличными от рассмотренных в п. 2.1 и 2.2.

Пример. Линейными операторами являются как правое, так и левое векторное умножение на фиксированный вектор в трёхмерном пространстве, то есть отображения вида Как найти образ заданного вектораи Как найти образ заданного вектора. Построим матрицу одного из этих операторов, Как найти образ заданного вектора. Для этого найдём образы всех трёх базисных векторов линейного пространства.

Как найти образ заданного вектора.

Аналогично, Как найти образ заданного вектора,

Как найти образ заданного вектора.

Координаты полученных векторов запишем в виде столбцов матрицы оператора.

Матрица оператора: Как найти образ заданного вектора.

Аналогично можно построить матрицу линейного оператора Как найти образ заданного вектора:

Как найти образ заданного вектора.

Пример. Линейный оператор дифференцирования в пространстве всех многочленов степени не более n. Это пространство размерности n + 1. Возьмём в качестве базиса элементы Как найти образ заданного вектора, Как найти образ заданного вектора, Как найти образ заданного вектора,…, Как найти образ заданного вектора.

Как найти образ заданного вектора, Как найти образ заданного вектора, Как найти образ заданного вектора, аналогично получим Как найти образ заданного вектора,…, Как найти образ заданного вектора.

Матрица этого линейного оператора:

Как найти образ заданного вектора

Линейные операторы могут отображать не только пространства конечной размерности, но и бесконечномерные пространства. Так, оператор дифференцирования может рассматриваться также в пространстве всех непрерывных функций. (В этом пространстве нет конечного базиса). В этом случае, очевидно, оператор не может быть задан матрицей конечного порядка.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10219 – Как найти образ заданного вектора| 7588 – Как найти образ заданного вектораили читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Видео:2 37 Нахождение орта вектораСкачать

2 37 Нахождение орта вектора

Матрица линейного оператора

Определение 1. Если задан закон, который каждому вектору x?? ставит в соот ветствие вектор y . то говорят, что в линейном пространстве ? задан оператор A , при этом пишут:

Определение 2. Оператор A называется линейным, если для любых x 1 ?? и x 2 ?? и произвольного числа ? выполняются условия:

Как найти образ заданного вектора

Рассмотрим теперь в евклидовом пространстве E n базис e 1 ,e 2 . e n и пусть в этом пространстве определён линейный оператор A : y = A x .

Разложим векторы x и y по базису e 1 ,e 2 . e n :

Как найти образ заданного вектора

В силу линейности оператора A можно написать

Заметим, что каждый вектор Как найти образ заданного вектора, следовательно, его также можно разложить по базису e 1 ,e 2 . e n , т.е.

Как найти образ заданного вектора

Как найти образ заданного вектора

В силу единственности разложения по данному базису мы можем при равнять коэффициенты при базисных векторах в правых частях формул (1) и (2); тогда получим:

Как найти образ заданного вектора

Получили, что линейному оператору A в данном базисе соответствует квадратная матрица

Как найти образ заданного вектора

которая называется матрицей линейного оператора A , i -й столбец которой состоит из координат вектора Ae i (i = 1,2. n ) относительно данного базиса. Отметим, что матрица A оператора A зависит от выбора базиса e 1 ,e 2 . e n .

Итак, мы показали, что всякому линейному оператору A в евклидовом пространстве E n соответствует матрица A ; можно доказать и обратное утверждение: всякую квадратную матрицу A можно рассматривать как матрицу некоторого линейного оператора A в данном базисе e 1 ,e 2 . e n .

Представляют интерес невырожденные линейные операторы, т.е. такие операторы, матрицы которых имеют обратную A -1 , т.е. также являются невырожденными. В этом случае каждому вектору y (образу), определённому соотношением, отвечает единственный вектор x (прообраз) и при этом имеет место матричное равенство: X = A -1 ? Y .

Видео:Матрица линейного оператораСкачать

Матрица линейного оператора

Примеры линейных операторов

1. В пространстве 2-мерных векторов линейным оператором является правило

Как найти образ заданного вектора

связывающее вектор-прообраз Как найти образ заданного векторас вектором-образом Как найти образ заданного вектора

2. В пространстве бесконечно дифференцируемых функций линейным оператором является операция дифференцирования, ставящая в соответствие каждому элементу этого простран ства его производную функцию.

3. В пространстве многочленов P n (t) линейным оператором является операция умножения многочлена на независимую переменную t .

Пример: Известны образы базисных векторов E 3 под действием оператора A :

Как найти образ заданного вектора

Найти матрицу этого оператора в исходном базисе.

Решение: По определению y = A x, значит в матричном виде можно записать, что A = X -1 Y . Для нашего примера получаем

Как найти образ заданного вектора

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Действия над операторами

Сложение линейных операторов. Пусть x?E n , A и B – два линейных оператора в этом пространстве.

Определение 1. Суммой линейных операторов A и B в E n называется оператор C, определяемый равенством Cx = A x + Bx , где x – любой вектор из E n .

Сумма линейных операторов является линейным оператором, причём его матрица C = A + B, где A и B – матрицы линейных операторов A и B .

Умножение линейного оператора на число. Пусть x?E n , линейный оператор A определён в E n , ? – некоторое число.

Определение 2. Произведением линейного оператора A на число ? называется оператор ?A , определяемый равенством Как найти образ заданного вектора.

?A является линейным оператором, а матрица этого линейного оператора получается из матрицы A умножением её на число ? , т.е. она равна ? ? A.

Умножение линейных операторов. Пусть x? E n , y ? E n , z ? E n и кроме того в E n определены линейные операторы A и B таким образом, что y = Bx, z = A y .

Определение 3. Произведением A ? B линейных операторов A и B называется оператор C, определяемый соотношением Cx = A (Bx) .

Таким образом, перемножение линейных операторов состоит в последовательном их применении по отношению к вектору x .

Рассмотрим матрицы – столбцы:

Как найти образ заданного вектора

и обозначим через A, B и C – соответственно матрицы линейных операторов A, B и C. Тогда Z = A ? (B ? X) = (A ? B) ? X = C ? X , таким образом, C = A ? B, т.е. матрица произведения линей ных операторов также является линейным оператором.

a) (A ? B)(x + y) = A (B(x + y)) = A (Bx + By) = A (Bx) + A (By) = = (A ? B) ? x + (A ? B) ? y

б) (A ? B)(? x) = A (B(? x)) = A (?Bx) =?A (Bx) =? (A ? B)x

Свойства умножения линейных операторов вытекают из свойств умножения матриц.

Определение 4. Линейные операторы A и В называются равными, если Как найти образ заданного вектораКак найти образ заданного вектора. Равенство операторов обозначается как A = B .

Определение 5. Оператор E называется единичным (или тождественным) оператором, если каждому элементу x линейного пространства Как найти образ заданного вектораон ставит в соответствие тот же самый элемент, то есть Как найти образ заданного вектора

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

1. Понятие линейного оператора

Пусть R и S линейные пространства, которые имеют размерность n и m соответственно. Оператором A действующим из R в S называется отображение вида Как найти образ заданного вектора, сопоставляющее каждому элементу x пространства R некоторый элемент y пространства S. Для этого отображения будем использовать обозначение y= A(x) или y= Ax.

Определение 1. Оператор A действующий из R в S называется линейным, если для любых элементов x1 и x2 пространства R и любого λ из числового поля K выполняются соотношения

Если пространство S совпадает с пространством R, то линейный оператор, который действует из R в R называют линейным преобразованием пространства R.

Пусть заданы два векторных пространства n-мерный R и m-мерный S, и пусть в этих пространствах заданы базисы Как найти образ заданного вектораи Как найти образ заданного векторасоответственно. Пусть задано отображение

y=Ax,(1)

где Am×n -матрица с коэффициентами из поля K. Тогда каждому элементу из R соответствует элемент y=Ax из S. Отображение (1) определяет оператор A. Покажем, что этот оператор обладает свойством линейности. Действительно, учитывая свойства умножения матриц, можно записать:

Как найти образ заданного вектора,(2)
Как найти образ заданного вектора.

Покажем теперь обратное, т.е. что для любого линейного оператора A, отображающего пространство R в S и произвольных базисов Как найти образ заданного вектораи Как найти образ заданного векторав R и S соответственно, существует такая матрица A с элементами из численного поля K, что определяемое этой матрицей линейное отображение (1) выражает координаты отображенного вектора y через координаты исходного вектора x.

Пусть x − произвольный элемент в R. Тогда

Как найти образ заданного вектора(3)

является разложением x в по базису Как найти образ заданного вектора.

Применим оператор A к базисным векторам Как найти образ заданного вектора:

Как найти образ заданного вектора(4)

где aij − координаты полученного вектора в базисе Как найти образ заданного вектора.

Тогда применяя оператор A к элементу x и учитывая (3) и (4), имеем

Как найти образ заданного вектораКак найти образ заданного вектора

Сделаем следующее обозначение:

Как найти образ заданного вектора(6)

Тогда равенство (5) примет следующий вид:

Как найти образ заданного вектора(7)

Из равенства (7) следует, что любой элемент из пространства R при отображении оператором A, в пространстве S и в базисе Как найти образ заданного вектораимеет координаты yi, i=1,2. m. В свою очередь, из (6) следует, что этим координатам соответствуют линейные комбинации координатов элемента xj, j=1,2. n с коэффициентами aij i=1,2. m; j=1,2. n.

Построим матрицу A с элементами aij:

Как найти образ заданного вектора(8)

Тогда выражение (6) можно записать в матричном виде:

y=Ax.(9)

Матрица A называется матрицей линейного оператора в заданных базисах Как найти образ заданного вектораи Как найти образ заданного вектора.

Видео:Образуют ли данные векторы базисСкачать

Образуют ли данные векторы базис

2. Сложение линейных операторов

Пусть A и B два линейных оператора действующих из R в S и пусть A и Bmxn − матрицы соответствующие этим операторам.

Определение 2. Суммой линейных операторов A и B называется оператор C, определяемый равенством

Cx= Ax+ Bx, x∈R,(10)

где x∈R означает, что x принадлежит пространстве R.

Сумма линейных операторов обозначается так C=A+B. Легко убедится, что сумма линейных операторов также является линейным оператором.

Применим оператор C к базисному вектору ej, тогда:

Cej= Aej+ Bej=n(aij+bij) ej
j= 1

Следовательно оператору C отвечает матрица Как найти образ заданного вектора,где i=1,2. m, j=1,2. n, т.е.

C=A+B.(11)

Видео:Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

3. Умножение линейных операторов

Пусть заданы три линейных пространства R, S и T. Пусть линейный оператор B отображает R в S, а линейный оператор A отображает S в T.

Определение 3. Произведением операторов A и B называется оператор C, для которого выполняется следующее равенство при любом x из R:

Cx= A( Bx), x ∈ R.(12)

Произведение линейных операторов обозначается C=AB. Легко убедится, что произведение линейных операторов также является линейным оператором.

Таким образом оператор C отображает пространство R в T. Выберем в пространствах R, S и T базисы и обозначим через A, B и C матрицы операторов A, B и C соответствующие этим базисам. Тогда отображения линейных операторов A, B, C

y=Bx, z=Ay, z=Cx

можно записать в виде матричных равенств

y=Bx, z=Ay, z=Cx

где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда

Cx=A(Bx)=(AB)x.

Учитывая произвольность х, получим

C=AB.(13)

Следовательно произведению операторов C=AB соответствует матричное произведение C=AB.

Видео:Высшая математика. Линейные пространства. Векторы. БазисСкачать

Высшая математика. Линейные пространства. Векторы. Базис

4. Умножение линейного оператора на число

Пусть задан линейный оператор A отображающий R в S и некоторое число λ из поля K.

Определение 4. Произведением оператора A на число λ называется оператор C, для которого выполняется следующее равенство при любом x из R:

Cx=λ ( Ax)(14)

Таким образом оператор C отображает пространство R в S. Выберем в пространствах R и S базисы и обозначим через A матрицу оператора A соответствующее этим базисам векторные равенства

y=Ax, z=λy, z=Cx

можно записать в виде матричных равенств

y=Ax, z=λy, z=Cx

где x, y, z − векторы x, y, z − представленные в виде координатных столбцов. Тогда

Cx=λ(Ax)=(λA)x.

Учитывая произвольность х, получим

C=λA.(15)

Следовательно произведению оператора C на число λ соответствует произведение матрицы A на число λ.

Видео:7 4 Собственные векторы и собственные значенияСкачать

7 4  Собственные векторы и собственные значения

5. Нулевой оператор

Оператор, отображающий все элементы пространства R в нулевой элемент пространства S называется нулевым оператором и обозначается через O. Действие нулевого оператора можно записать так:

Видео:5 1 Ядро и образ линейного отображенияСкачать

5 1  Ядро и образ линейного отображения

6. Противоположный оператор

Противоположным оператору A называется оператор −A удовлетворяющий равенству:

Видео:Собственные векторы и собственные числа линейного оператораСкачать

Собственные векторы и собственные числа линейного оператора

7. Ядро линейного оператора

Определение 5. Ядром линейного оператора A называется множество всех тех элементов x пространства R, для которых выполняется следующее равенство: Ax=0.

Ядро линейного оператора также называют дефектом оператора. Ядро линейного оператора обозначается символом ker A.

Видео:Найдите разложение вектора по векторам (базису)Скачать

Найдите разложение вектора по векторам (базису)

8. Образ линейного оператора

Определение 6. Образом линейного оператора A называется множество всех элементов y пространства R, для которых выполняется следующее равенство: y=Ax для всех x из R.

Образ линейного оператора обозначается символом im A.

9. Ранг линейного оператора

Определение 7. Рангом линейного оператора A обозначаемое символом rang A называется число равное размерности образа im A оператора A, т.е.: rang A=dim(im A).

Ядро и образ линейного отображения

Ядром линейного отображения называется множество таких векторов , что , т.е. множество векторов из , которые отображаются в нулевой вектор пространства . Ядро отображения обозначается:

Образом линейного отображения называется множество образов всех векторов из . Образ отображения обозначается или

Заметим, что символ следует отличать от — мнимой части комплексного числа.

Примеры ядер и образов линейных отображений

1. Ядром нулевого отображения является все пространство , а образом служит один нулевой вектор, т.е.

2. Рассмотрим отображение , которое ставит в соответствие каждому вектору n-мерного линейного пространства его координатный столбец относительно заданного базиса . Ядром этого отображения является нулевой вектор пространства , поскольку только этот вектор имеет нулевой координатный столбец . Образ преобразования совпадает со всем пространством , так как это преобразование сюръективно (любой столбец из является координатным столбцом некоторого вектора пространства ).

3. Рассмотрим отображение , которое каждому вектору n-мерного евклидова пространства ставит в соответствие алгебраическое значение его проекции на направление, задаваемое единичным вектором . Ядром этого преобразования является ортогональное дополнение — множество векторов, ортогональных . Образом является все множество действительных чисел .

4. Рассмотрим отображение , которое каждому многочлену степени не выше ставит в соответствие его производную. Ядром этого отображения является множество многочленов нулевой степени, а образом — все пространство .

Свойства ядра и образа линейного отображения

1. Ядро любого линейного отображения является подпространством: .

В соответствии с определением требуется доказать, что множество является непустым и замкнутым относительно операций сложения векторов и умножения вектора на число. В самом деле, из однородности отображения следует, что

т.е. нулевой вектор отображается в нулевой вектор . Следовательно, ядро любого линейного отображения не является пустым и содержит, по крайней мере, нулевой элемент: . Покажем, что множество замкнуто по отношению к операциям сложения векторов и умножения вектора на число. Действительно:

Следовательно, множество является линейным подпространством пространства .

2. Образ любого линейного отображения является подпространством: .

В самом деле, докажем, например, замкнутость множества по отношению к операции умножения вектора на число. Если , то существует вектор такой, что . Тогда , то есть .

Поскольку ядро и образ линейного отображения являются линейными подпространствами (свойства 1 и 2), можно говорить об их размерностях.

Дефектом линейного отображения называется размерность его ядра: , а рангом линейного отображения — размерность его образа: .

3. Ранг линейного отображения равен рангу его матрицы (определенной относительно любых базисов).

В самом деле, если любой базис пространства , то . Поэтому максимальное число линейно независимых векторов системы (ранг системы векторов) равно максимальному числу линейно независимых столбцов матрицы отображения, т.е. рангу матрицы: .

4. Линейное отображение инъективно тогда и только тогда, когда , другими словами, когда дефект отображения равен нулю: .

Действительно, образом нулевого вектора служит нулевой вектор . Поэтому, если отображение инъективно, то ядро содержит только нулевой вектор , иначе два разных вектора имели бы один и тот же образ . Обратно, при условии разные векторы не могут иметь одинаковые образы , так как в этом случае из равенств , следует, что ненулевой вектор (приходим к противоречию).

5. Линейное отображение сюръективно тогда и только тогда, когда , другими словами, когда ранг отображения равен размерности пространства образов: .

6. Линейное отображение биективно (значит, обратимо) тогда и только тогда, когда и одновременно.

Теорема (9.1) о размерностях ядра и образа. Сумма размерностей ядра и образа любого линейного отображения равна размерности пространства прообразов:

Действительно, пусть . Выберем в подпространстве базис и дополним его векторами до базиса всего пространства . Покажем, что векторы образуют базис подпространства .

Во-первых, , так как образ любого вектора линейно выражается через векторы

Во-вторых, образующие линейно независимы. Если их линейная комбинация равна нулевому вектору:

то вектор принадлежит ядру (его образ — нулевой вектор). Однако, по построению этот вектор принадлежит алгебраическому дополнению . Учитывая, что , заключаем: . Получили разложение нулевого вектора по линейно независимой системе векторов, значит, все коэффициенты . Поэтому равенство справедливо только для тривиальной линейной комбинации, т.е. система векторов линейно независимая.

Таким образом, векторы образуют базис подпространства , а его размерность определяется количеством базисных векторов, т.е. , что равносильно (9.3).

Следствие. Линейное отображение биективно (значит, обратимо) тогда и только тогда, когда обратима его матрица (определенная относительно любых базисов).

Действительно, для обратимости преобразования (см. свойство 6) его матрица (размеров ) должна удовлетворять условиям (см. свойства 3,4,5):

Тогда по теореме 9.1 заключаем, что , т.е. матрица — квадратная n-го порядка и невырожденная , что и требовалось доказать.

Обратимые линейные отображения называются также невырожденными (имея в виду невырожденность их матрицы).

Поделиться или сохранить к себе: