Длины сторон четырехугольника по координатам

Задачи на координатной сетке
Содержание
  1. Задачи на координатной сетке
  2. Площади некоторых фигур
  3. Площадь треугольника:
  4. Площади четырехугольников:
  5. Площадь круга:
  6. Теорема Пифагора
  7. Прямые на координатной плоскости
  8. Формулы площади
  9. Основные свойства и виды
  10. Что такое четырех угольник
  11. Формулы площади квадрата
  12. Определения и соглашения
  13. Площадь четырехугольника, заданного координатами
  14. Формула вычисления площади
  15. Нахождение площади четырёхугольника различными способами и методами
  16. Особые виды четырехугольников
  17. Квадрат, прямоугольник и другие параллелограммы
  18. Пример задачи
  19. Свойство диагоналей выпуклого четырехугольника
  20. Свойства длин сторон четырехугольника
  21. Четырехугольник и окружность
  22. Вывод формул для площадей четырехугольников
  23. Четырехугольник — виды и свойства с примерами решения
  24. Внутренние и внешние углы четырехугольника
  25. Сумма внутренних углов выпуклого четырёхугольника
  26. Сумма внешних углов выпуклого четырёхугольника
  27. Параллелограмм
  28. Параллелограмм и его свойства
  29. Признаки параллелограмма
  30. Прямоугольник
  31. Признак прямоугольника
  32. Ромб и квадрат
  33. Свойства ромба
  34. Трапеция
  35. Средняя линия треугольника
  36. Средняя линия трапеции
  37. Координаты середины отрезка
  38. Теорема Пифагора
  39. Справочный материал по четырёхугольнику
  40. Пример №1
  41. Признаки параллелограмма
  42. Пример №2 (признак параллелограмма).
  43. Прямоугольник
  44. Пример №3 (признак прямоугольника).
  45. Ромб. Квадрат
  46. Пример №4 (признак ромба)
  47. Теорема Фалеса. Средняя линия треугольника
  48. Пример №5
  49. Пример №6
  50. Трапеция
  51. Пример №7 (свойство равнобедренной трапеции).
  52. Центральные и вписанные углы
  53. Пример №8
  54. Вписанные и описанные четырёхугольники
  55. Пример №9
  56. Пример №10
  57. 📺 Видео

Видео:Нахождение длины отрезка по координатамСкачать

Нахождение длины отрезка по координатам

Задачи на координатной сетке

Площадь фигур на координатной сетке или плоскости можно решить несколькими способами:

1. Достроить фигуру до прямоугольника или квадрата.

2. Найти площадь прямоугольника.

3. Найти площади всех дополнительных фигур (чаще всего это прямоугольные треугольники или трапеции).

4. Из площади прямоугольника вычесть все площади дополнительных фигур.

Найдите площадь четырёхугольника, вершины которого имеют координаты $(0;5), (4;7), (7;0), (11;2)$.

1. Достроим параллелограмм до прямоугольника

2. Найдем длину и ширину прямоугольника:

Чтобы найти длину стороны, параллельную какой либо оси, надо из большей координаты отнять меньшую координату.

Длина стороны $EF= 11$, стороны $FK= 7$. Подставим в формулу площади данные и сделаем вычисления: $S_= 11·7=77$.

3. Найдем площади дополнительных (ненужных) фигур:

4. Из площади прямоугольника вычтем все площади дополнительных фигур и таким образом получим площадь искомого параллелограмма.

  • Второй способ

1. Если линии фигуры идут ровно по клеточкам и можно посчитать длины сторон, высот и т.д., то считаем клеточки и определяем величины.

2. Подставляем известные значения в формулу площади.

  • Третий способ.

Площадь искомой фигуры можно найти по формуле Пика:

$S=/+В-1$, где $Г$ — количество узлов на границе фигуры (на сторонах и вершинах);

$В$ — количество узлов внутри фигуры.

Узел – это уголок клетки или пересечение линий

Найдите площадь четырёхугольника, изображённого на клетчатой бумаге с размером клетки $1 см × 1$ см. Ответ дайте в квадратных сантиметрах.

Отметим красными точками узлы на границе фигуры (Г), а желтыми – узлы внутри фигуры (В).

Подставим данные в формулу Пика: $S=/+6-1=3.5+6-1=8.5$

Площади некоторых фигур

Площадь треугольника:

  1. $S=/$, где $h_a$ — высота, проведенная к стороне $а$
  2. Для прямоугольного треугольника $S=/$, где $а$ и $b$ — катеты прямоугольного треугольника.
  3. Для равностороннего треугольника $S=<a^√3>/$, где $а$ — длина стороны.

Площади четырехугольников:

  1. Прямоугольник $S=a·b$, где $а$ и $b$ — смежные стороны.
  2. Ромб $S=/$, где $d_1$ и $d_2$ — диагонали ромба
  3. Трапеция $S=/$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.
  4. Квадрат $S=a^2$, где $а$ — сторона квадрата.
  5. Параллелограмм $S=a·h_a$, где $h_a$ — высота, проведенная к стороне $а$.

Площадь круга:

$S=π·R^2$, где $π=3.14, R$ — радиус окружности.

Площадь сектора:

$S=<S_n°>/=/$, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.

Площадь кольца:

В прямоугольнике и квадрате центр описанной окружности лежит в точке пересечения диагоналей, а радиус описанной окружности равен половине диагонали.

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы и радиус равен половине гипотенузы.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$ для острого угла $В$:

Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

$cos BOA= — cos BOC$;

$ctg BOA= — ctg BOC$.

Углы в окружности.

1. Угол, образованный двумя радиусами, называется центральным. Центральный угол равен градусной мере дуги, на которую он опирается.

2. Угол, вершина которого лежит на окружности, а стороны являются хордами, называется вписанным. Вписанный угол равен половине градусной меры дуги, на которую он опирается

Найдите величину угла MPK. Ответ дайте в градусах.

Угол $МРК$ равен половине градусной меры дуги $МК$, так как он вписанный. Чтобы отыскать градусную меру дуги, посмотрим, на сколько таких дуг мы можем разделить всю окружность, потом $360°$ разделим на полученное количество.

Дуга $МК$ отсекается хордой, занимающей две клетки. Разделим такими хордами всю окружность, получилось $8$ дуг.

$360:8=45°$, составляет градусная мера дуги $МК$.

Прямые на координатной плоскости

Координаты середины отрезка равны среднему арифметическому координат его концов.

Найдите абсциссу середины отрезка, соединяющего точки $В(2;8)$ и $A(6;4)$.

Пусть точка $М$ – середина отрезка $ВА$. Чтобы найти абсциссу данной точки, надо найти среднее арифметическое абсцисс концов отрезка:

Уравнение прямой, проходящей через две заданные точки на плоскости имеет вид $y=kx+b$, где $k$ и $b$ – это коэффициенты.

Уравнение можно задать с помощью формулы:

Точки пересечения прямой с осями координат:

Если прямая пересекает ось Ох, то в уравнении прямой координата $у = 0$, а если прямая пересекает ось Оу, то уравнении прямой координата $х = 0$.

Две прямые на координатной плоскости будут параллельны, если в уравнениях прямых будут равны коэффициенты k.

Если уравнение первой прямой: $y=k_x+b_1$;

Уравнение второй прямой: $y= k_x+b_2$, то при параллельности прямых, $k_1=k_2$.

Формулы площади

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Основные свойства и виды

К выпуклым четырехугольникам можно отнести практически все известные нам фигуры, состоящие из четырех углов и сторон. Можно выделить следующие:

Все эти фигуры объединяет не только то, что они четырехугольные, но и то, что они еще и выпуклые. Достаточно просто рассмотреть схему:

Видео:№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнениеСкачать

№973. Даны координаты вершин треугольника ABC: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение

Что такое четырех угольник

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки. Площадь четырехугольника равна полупроизведению его диагоналей и угла между ними.

Четырехугольник – это многоугольник с четырьмя вершинами, три из которых не лежат на одной прямой.

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, три из которых не лежат на одной прямой, последовательно соединенная отрезками.

Длины сторон четырехугольника по координатам

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Формулы площади квадрата

Длины сторон четырехугольника по координатам

S =1d 2
2

где S – площадь квадрата,
a – длина стороны квадрата,
d – длина диагонали квадрата.

Видео:Метод координат. Как найти медиану треугольника, если известны координаты его вершин?Скачать

Метод координат. Как найти медиану треугольника, если известны координаты его вершин?

Определения и соглашения

В приведённой ниже таблице будут указаны определения и договорённости, которые будут использоваться в дальнейшем во время наших рассуждений.

  1. Длины сторон четырехугольника по координатамЧетырёхугольник – это фигура из четырёх точек (вершин), из которых любые три не лежат на одной прямой, и четырёх отрезков (сторон) последовательно их соединяющих.
  2. Диагональ — отрезок, соединяющий вершины многоугольника не лежащие на одной стороне (её обозначение – латинская буква d).
  3. Площадь фигуры — это численное значение территории, заключённой внутри многоугольника (её обозначение – латинская буква S).
  4. Синус угла — это число равное отношению противоположного катета к гипотенузе в прямоугольном треугольнике. (её обозначение – запись sin).
  5. Косинус угла — это число равное отношению прилежащего катета к гипотенузе в прямоугольном треугольнике. В дальнейшем в статье для его обозначения будем использовать латинскую запись cos.
  6. Описанная окружность — это окружность, которой принадлежат все вершины многоугольника ( её радиуса обозается буквой R).
  7. Вписанная окружность — это окружность, которая касается всех сторон многоугольника. В дальнейшем в статье для обозначения её радиуса будем использовать латинскую букву r.
  8. Угол между сторонами a и b будем обозначать следующей записью (a,b).

Длины сторон четырехугольника по координатам

Видео:ГЕОМЕТРИЯ ОГЭ задание 18 найти площадь четырехугольника с заданными координатами вершинСкачать

ГЕОМЕТРИЯ ОГЭ задание 18 найти площадь четырехугольника с заданными координатами вершин

Площадь четырехугольника, заданного координатами

Формула площади четырехугольника по координатам используется для расчета площади фигур, которые располагаются в системе координат. В этом случае для начала требуется расчет длин необходимых сторон. В зависимости от типа четырехугольника может меняться и сама формула. Рассмотрим пример расчета площади четырехугольника, используя квадрат, который лежит в системе координат XY .

Мы знаем, что все стороны фигуры равны, и формула площади квадрата находится по формуле:Длины сторон четырехугольника по координатам
Найдем одну из сторон, к примеру, AB :Длины сторон четырехугольника по координатам
Подставим значения в формулу:Длины сторон четырехугольника по координатам
Знаем, что все стороны одинаковые. Подставляем значение в формулу расчета площади: Длины сторон четырехугольника по координатам

Видео:Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)Скачать

Найдите площадь треугольника АВС, если А(5;2;6), В(1;2;0), С(3;0;3)

Формула вычисления площади

Площадь (S) выпуклого четырехугольника равняется одной второй (половине) произведения его диагоналей и синуса угла между ними:

S = 1/2 * d1 * d2 * sin α

Видео:Длина вектора через координаты. 9 класс.Скачать

Длина вектора через координаты. 9 класс.

Нахождение площади четырёхугольника различными способами и методами

Узнаем как найти площадь четырёхугольника когда даны его диагонали и образуемый при их пересечении острый угол. Тогда площадь четырёхугольника будет вычисляться по формуле: S = 1/2*d1*d2*sin(d1,d2).

Рассмотрим пример. Пусть d1 = 15 сантиметров, d2 = 12 сантиметров, и угол между ними 30 градусов. Определим S. S = 1/2*15*12*sin30 = 1/2*15*12*1/2 = 45 сантиметров квадратных.

Теперь пусть даны стороны и противолежащие углы четырёхугольника.

Пусть a, b, c, d известные стороны многоугольника; p – его полупериметр. Корень квадратный выражения условимся обозначать как rad (от латинского radical). Формула площади четырёхугольника будет находиться по формуле: S = rad(( p − a ) ( p − b ) ( p − c ) ( p − d ) − a b c d ⋅ c o s^2( (a,b) + (c,d))/2), где p = 1/2*(a + b + c + d).

На первый взгляд, формула кажется очень сложной и вычурной. Однако ничего сложного здесь нет, что мы и докажем, рассмотрев пример. Пусть данные нашего условия следующие: a = 18 миллиметров, b = 23 миллиметра, c = 22 миллиметра, d = 17 миллиметров. Противолежащие углы будут равны (a,b) = 0,5 градуса и (c,d) = 1,5 градуса. Для начала находим полупериметр: p = 1/2*(18 + 23 + 22 + 17) = 1/2*80 = 40 миллиметров.

Теперь найдём квадрат косинуса полусуммы противолежащих углов: c o s^2( (a,b) + (c,d))/2) = c o s^2(0,5 + 1,5)/2 = c o s1*c o s1 = (1/2)*(1/2) = 0,9996.

Подставим полученные данные в нашу формулу, получим: S = rad((40 – 18)*(40 – 23)*(40 – 22)*(40 – 17) – 18*23*22*17*0,97) = rad(22*17*18*23 – 18*23*22*17*1/4) = rad((22*17*18*23*(1 – 0,9996)) = rad(154836*0,0004) = rad62 = 7,875 миллиметра квадратного.

Разберёмся как находить площадь с помощью вписанной и описанной окружностей. При решении задач данной темы имеет смысл сопровождать свои действия вспомогательным рисунком, хотя это требование и не является обязательным.

Если есть вписанная окружность и нужно найти площадь четырёхугольника формула имеет вид:

Снова возьмём на рассмотрение пример: a = 16 метров, b = 30 метров, c = 28 метров, d = 14 метров, r = 6 метров. Подставим аши значения в формулу, получим:

S = ((16 +30 + 28 + 14)/2)*6 = 44*6 = 264 метров квадратных.

Теперь займёмся вариантом когда окружность описана вокруг четырёхугольника. Здесь мы сможем воспользоваться следующей формулой:

S = rad((p − a )*( p − b )*( p − c )*( p − d ), где p равно половине длины периметра. Пускай в нашем случае стороны имеют следующие значения a = 26 дециметров, b = 35 дециметров, c = 39 дециметров, d = 30 дециметров.

Первым делом определим полупериметр, p = (26 + 35 + 39 + 30)/2 = 65 дециметров. Подставим найденное значение в нашу формулу. Получим:

S = rad((65 – 26)*(65 – 35)*(65 – 39)*(65 – 30)) = rad(39*30*26*35) = 1032 (округлённо) дециметров квадратных.

Длины сторон четырехугольника по координатам

Видео:№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).Скачать

№933. Найдите координаты вершины D параллелограмма ABCD, если А (0; 0), B (5; 0), С (12; -3.).

Особые виды четырехугольников

Четырехугольники могут обладать дополнительными свойствами, образуя особые виды геометрических фигур:

  • Параллелограмм
  • Ромб
  • Прямоугольник
  • Квадрат
  • Трапеция
  • Дельтоид
  • Контрпараллелограмм

Видео:Урок. Как найти длины сторон прямоугольника, по его периметру. Математика 2 класс. #учусьсамСкачать

Урок. Как найти длины сторон прямоугольника, по его периметру. Математика  2 класс. #учусьсам

Квадрат, прямоугольник и другие параллелограммы

Длины сторон четырехугольника по координатам

  • Квадрат — это параллелограмм, у которого все стороны равны и пересекаются под прямым углом.
  • Прямоугольник — это параллелограмм, у которого все стороны пересекаются под прямым углом.
  • Ромб — это параллелограмм, у которого все стороны равны.

Длины сторон четырехугольника по координатам

  • Площадь = длина х высота, или S = a х h.
  • Пример: если длина прямоугольника равна 10 см, а ширина равна 5 см, то площадь этого прямоугольника: S = 10 х 5 = 50 квадратных сантиметров.
  • Не забывайте, что площадь измеряется в квадратных единицах (квадратных метрах, квадратных сантиметрах и так далее).

Длины сторон четырехугольника по координатам

  • Площадь = сторона х сторона, или S = a 2.
  • Пример: если сторона квадрата равна 4 см (a = 4), то площадь этого квадрата: S = a 2 = 4 х 4 = 16 квадратных сантиметров.

Длины сторон четырехугольника по координатам

  • Площадь = (диагональ1 х диагональ2)/2, или S = (d1 × d2)/2
  • Пример: если диагонали ромба равны 6 см и 8 см, то площадь этого ромба: S = (6 х 8)/2 = 24 квадратных сантиметров.

Длины сторон четырехугольника по координатам

  • Пример: если длина ромба равна 10 см, а его высота равна 3 см, то площадь такого ромба равна 10 х 3 = 30 квадратных сантиметров.

Длины сторон четырехугольника по координатам

  • Площадь = сторона х высоту, или S = a × h
  • Площадь = (диагональ1 × диагональ2)/2, или S = (d1 × d2)/2
  • Пример: если сторона квадрата равна 4 см, то его площадь равна 4 х 4 = 16 квадратных сантиметров.
  • Пример: диагонали квадрата равны по 10 см. Вы можете найти площадь этого квадрата по формуле: (10 х 10)/2 = 100/2 = 50 квадратных сантиметров.

Видео:Вычисляем угол через координаты вершинСкачать

Вычисляем угол через координаты вершин

Пример задачи

Найдите площадь выпуклого четырехугольника, если его диагонали равны 5 и 9 см, а угол между ними составляет 30°.

Решение:
Подставляем в формулу известные нам значения и получаем: S = 1/2 * 5 см * 9 см * sin 30° = 11,25 см 2 .

Видео:№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)Скачать

№942. Найдите медиану AM треугольника ABC, вершины которого имеют координаты: А(0; 1), В(1; -4)

Свойство диагоналей выпуклого четырехугольника

Диагонали выпуклого четырехугольника пересекаются. Действительно, это явление можно наблюдать визуально, достаточно взглянуть на рисунок:

На рисунке слева изображен невыпуклый четырехугольник или четырехсторонник. Как угодно. Как видно, диагонали не пересекаются, по крайней мере, не все. Справа изображен выпуклый четырехугольник. Тут уже наблюдается свойство диагоналей пересекаться. Это же свойство можно считать признаком выпуклости четырехугольника.

Видео:Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Свойства длин сторон четырехугольника

Модуль разности любых двух сторон четырёхугольника не превосходит суммы двух других его сторон.

Важно. Неравенство верно для любой комбинации сторон четырехугольника. Рисунок приведен исключительно для облегчения восприятия.

В любом четырёхугольнике сумма длин трёх его сторон не меньше длины четвёртой стороны.

Важно. При решении задач в пределах школьной программы можно использовать строгое неравенство ( a, b, c, d формула полупериметра будет выглядеть так: Длины сторон четырехугольника по координатам
Зная стороны, выводим формулу. Площадь четырехугольника представляет собой корень из произведения разности полупериметра с длиной каждой стороны:

Длины сторон четырехугольника по координатам

Видео:Длина отрезкаСкачать

Длина отрезка

Четырехугольник и окружность

Четырехугольник, описанный вокруг окружности (окружность, вписанная в четырехугольник).

Главное свойство описанного четырехугольника:

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин противоположных сторон равны.

Четырехугольник, вписанный в окружность (окружность, описанная вокруг четырехугольника)

Главное свойство вписанного четырехугольника:

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы противоположных углов равны 180 градусов.

Видео:Координаты середины отрезкаСкачать

Координаты середины отрезка

Вывод формул для площадей четырехугольников

Утверждение 1 . Площадь выпуклого четырёхугольника можно найти по формуле

Длины сторон четырехугольника по координатам

где d1 и d2 – диагонали четырёхугольника , а φ – любой из четырёх углов между ними (рис. 1).

Длины сторон четырехугольника по координатам

Доказательство . В соответствии с рисунком 1 справедливо равенство:

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

что и требовалось доказать.

Утверждение 2 . Площадь параллелограмма параллелограмма можно найти по формуле

где a – сторона параллелограмма, а ha – высота высота высота , опущенная на эту сторону (рис. 2).

Длины сторон четырехугольника по координатам

Доказательство . Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому

что и требовалось доказать.

Утверждение 3 .Площадь параллелограмма параллелограмма можно найти по формуле

где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).

Длины сторон четырехугольника по координатам

то, в силу утверждения 2, справедлива формула

что и требовалось доказать.

Утверждение 4 . Площадь ромба ромба можно найти по формуле

Длины сторон четырехугольника по координатам,

где r – радиус вписанной в ромб окружности , а φ – любой из четырёх углов ромба (рис.4).

Длины сторон четырехугольника по координатам

Доказательство . Поскольку каждая из диагоналей ромба является биссектрисой угла , а каждая точка биссектрисы угла равноудалена от сторон угла, то точка пересечения диагоналей ромба равноудалена от всех сторон ромба и является центром вписанной в ромб окружности . Отсюда следует, в частности, что высота ромба в 2 раза больше радиуса вписанной окружности (рис.4). Поэтому

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

что и требовалось доказать.

Утверждение 5 . Площадь трапеции можно найти по формуле

Длины сторон четырехугольника по координатам,

где a и b – основания трапеции, а h – высота высота высота (рис.5).

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Доказательство . Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD . Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам) , то площадь трапеции ABCD равна площади треугольника ABF . Поэтому

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

что и требовалось доказать.

Утверждение 6 . Площадь трапеции трапеции можно найти по формуле

Длины сторон четырехугольника по координатам

где a и b – основания, а c и d – боковые стороны трапеции ,
Длины сторон четырехугольника по координатам
(рис.6).

Длины сторон четырехугольника по координатам

Доказательство . Воспользовавшись теоремой Пифагора , составим следующую систему уравнений с неизвестными x, y, h (рис. 6):

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам,

что и требовалось доказать.

Утверждение 7 . Площадь дельтоида , дельтоида , можно найти по формуле:

где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).

Длины сторон четырехугольника по координатам

Доказательство . Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D , а биссектрисы углов A и C пересекаются в некоторой точке O , лежащей на диагонали BD . Точка O и является центром вписанной в дельтоид окружности.

Если r – радиус вписанной в дельтоид окружности, то

Видео:Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Длины сторон четырехугольника по координатам

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Длины сторон четырехугольника по координатам

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Длины сторон четырехугольника по координатам

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Длины сторон четырехугольника по координатам

Видео:РАЗМЕР ЗЕМЕЛЬНОГО УЧАСТКА по ЕГРН. ОБРАТНАЯ ГЕОДЕЗИЧЕСКАЯ ЗАДАЧА длина сторон участка по координатамСкачать

РАЗМЕР ЗЕМЕЛЬНОГО УЧАСТКА по ЕГРН. ОБРАТНАЯ ГЕОДЕЗИЧЕСКАЯ ЗАДАЧА длина сторон участка по координатам

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Длины сторон четырехугольника по координатамуглы Длины сторон четырехугольника по координатамявляются внешними.

Длины сторон четырехугольника по координатам

Каждый внутренний угол выпуклого четырёхугольника меньше Длины сторон четырехугольника по координатамГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Длины сторон четырехугольника по координатамДлины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Длины сторон четырехугольника по координатамДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Длины сторон четырехугольника по координатам

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Длины сторон четырехугольника по координатам

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Длины сторон четырехугольника по координатам

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Длины сторон четырехугольника по координатамДлины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Длины сторон четырехугольника по координатам

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Длины сторон четырехугольника по координатам

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Длины сторон четырехугольника по координатам

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Длины сторон четырехугольника по координатам

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Длины сторон четырехугольника по координатамто параллелограмм Длины сторон четырехугольника по координатамявляется ромбом.

Длины сторон четырехугольника по координатам

Доказательство теоремы 1.

Дано: Длины сторон четырехугольника по координатамромб.

Докажите, что Длины сторон четырехугольника по координатам

Доказательство (словестное): По определению ромба Длины сторон четырехугольника по координатамПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Длины сторон четырехугольника по координатамравнобедренный. Медиана Длины сторон четырехугольника по координатам(так как Длины сторон четырехугольника по координатам), является также и биссектрисой и высотой. Т.е. Длины сторон четырехугольника по координатамТак как Длины сторон четырехугольника по координатамявляется прямым углом, то Длины сторон четырехугольника по координатам. Аналогичным образом можно доказать, что Длины сторон четырехугольника по координатам

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Длины сторон четырехугольника по координатам

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Длины сторон четырехугольника по координатам

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Длины сторон четырехугольника по координатам

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

План доказательства теоремы 2

Дано: Длины сторон четырехугольника по координатамравнобедренная трапеция. Длины сторон четырехугольника по координатам

Докажите: Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Длины сторон четырехугольника по координатамтогда Длины сторон четырехугольника по координатамЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Длины сторон четырехугольника по координатампроведем параллельную прямую к прямой Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Длины сторон четырехугольника по координатамчерез точку Длины сторон четырехугольника по координатам— середину стороны Длины сторон четырехугольника по координатампроведите прямую параллельную Длины сторон четырехугольника по координатамКакая фигура получилась? Является ли Длины сторон четырехугольника по координатамтрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Длины сторон четырехугольника по координатамМожно ли утверждать, что Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Доказательство. Пусть дан треугольник Длины сторон четырехугольника по координатами его средняя линия Длины сторон четырехугольника по координатамПроведём через точку Длины сторон четырехугольника по координатампрямую параллельную стороне Длины сторон четырехугольника по координатамПо теореме Фалеса, она проходит через середину стороны Длины сторон четырехугольника по координатамт.е. совпадает со средней линией Длины сторон четырехугольника по координатамТ.е. средняя линия Длины сторон четырехугольника по координатампараллельна стороне Длины сторон четырехугольника по координатамТеперь проведём среднюю линию Длины сторон четырехугольника по координатамТ.к. Длины сторон четырехугольника по координатамто четырёхугольник Длины сторон четырехугольника по координатамявляется параллелограммом. По свойству параллелограмма Длины сторон четырехугольника по координатамПо теореме Фалеса Длины сторон четырехугольника по координатамТогда Длины сторон четырехугольника по координатамТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Длины сторон четырехугольника по координатам

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Длины сторон четырехугольника по координатам

Доказательство: Через точку Длины сторон четырехугольника по координатами точку Длины сторон четырехугольника по координатамсередину Длины сторон четырехугольника по координатампроведём прямую и обозначим точку пересечения со стороной Длины сторон четырехугольника по координатамчерез Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Длины сторон четырехугольника по координатамрадиусом 3 единицы. Вычислите значение выражения Длины сторон четырехугольника по координатамЕсть ли связь между значением данного выражения и координатой точки Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Длины сторон четырехугольника по координатами Длины сторон четырехугольника по координатами точка Длины сторон четырехугольника по координатамкоторая является серединой отрезка Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатамто Длины сторон четырехугольника по координатама отсюда следует, что Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

2) По теореме Фалеса, если точка Длины сторон четырехугольника по координатамявляется серединой отрезка Длины сторон четырехугольника по координатамто на оси абсцисс точка Длины сторон четырехугольника по координатамявляется соответственно координатой середины отрезка концы которого находятся в точках Длины сторон четырехугольника по координатами Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

3) Координаты середины отрезка Длины сторон четырехугольника по координатамс концами Длины сторон четырехугольника по координатами Длины сторон четырехугольника по координатамточки Длины сторон четырехугольника по координатамнаходятся так:

Длины сторон четырехугольника по координатам

Убедитесь, что данная формула верна в случае, если отрезок Длины сторон четырехугольника по координатампараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Длины сторон четырехугольника по координатамкак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Длины сторон четырехугольника по координатам

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Длины сторон четырехугольника по координатам

Шаг 4. На сторонах другого квадрата отметьте отрезки Длины сторон четырехугольника по координатамкак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Длины сторон четырехугольника по координатам

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Длины сторон четырехугольника по координатам

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Длины сторон четырехугольника по координатам

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Длины сторон четырехугольника по координатамто, Длины сторон четырехугольника по координатам— прямоугольный.

Длины сторон четырехугольника по координатам

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Длины сторон четырехугольника по координатамявляются Пифагоровыми тройками, то и числа Длины сторон четырехугольника по координатамтакже являются Пифагоровыми тройками.

Видео:Длина медианы треугольникаСкачать

Длина медианы треугольника

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Длины сторон четырехугольника по координатам(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Длины сторон четырехугольника по координатамДлины сторон четырехугольника по координатам

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Длины сторон четырехугольника по координатам

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Длины сторон четырехугольника по координатам, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Длины сторон четырехугольника по координатам

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Длины сторон четырехугольника по координатам=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Длины сторон четырехугольника по координатам+ CD (по неравенству треугольника). Тогда Длины сторон четырехугольника по координатам. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Длины сторон четырехугольника по координатам. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Длины сторон четырехугольника по координатам

Решение:

Длины сторон четырехугольника по координатам(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Длины сторон четырехугольника по координатам(АВ CD, ВС-секущая), Длины сторон четырехугольника по координатам(ВС || AD, CD — секущая), Длины сторон четырехугольника по координатам(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Длины сторон четырехугольника по координатам

Доказательство. Длины сторон четырехугольника по координатампо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Длины сторон четырехугольника по координатамкак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Длины сторон четырехугольника по координатам

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Длины сторон четырехугольника по координатам

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Длины сторон четырехугольника по координатампо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Длины сторон четырехугольника по координатам Длины сторон четырехугольника по координатамУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Длины сторон четырехугольника по координатам

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Длины сторон четырехугольника по координатам

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Длины сторон четырехугольника по координатампо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Длины сторон четырехугольника по координатамкак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Длины сторон четырехугольника по координатамНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Длины сторон четырехугольника по координатам

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Длины сторон четырехугольника по координатампо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Длины сторон четырехугольника по координатамкак вертикальные. Из равенства треугольников следует: ВС= AD и Длины сторон четырехугольника по координатамНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Длины сторон четырехугольника по координатам

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Длины сторон четырехугольника по координатам

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Длины сторон четырехугольника по координатам

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Длины сторон четырехугольника по координатамМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Длины сторон четырехугольника по координатам. Длины сторон четырехугольника по координатампо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Длины сторон четырехугольника по координатам. Поскольку в параллелограмме противоположные углы равны, то: Длины сторон четырехугольника по координатам. По свойству углов четырёхугольника, Длины сторон четырехугольника по координатам

Следовательно, Длины сторон четырехугольника по координатам: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Длины сторон четырехугольника по координатам

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Длины сторон четырехугольника по координатам

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Длины сторон четырехугольника по координатам

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Длины сторон четырехугольника по координатам

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Длины сторон четырехугольника по координатам. Длины сторон четырехугольника по координатам

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Длины сторон четырехугольника по координатам

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Длины сторон четырехугольника по координатам(рис. 96). Докажем, что ABCD— ромб. Длины сторон четырехугольника по координатампо двум сторонами и углу между ними.

Длины сторон четырехугольника по координатам

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Длины сторон четырехугольника по координатампо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Длины сторон четырехугольника по координатам

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Длины сторон четырехугольника по координатам

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Длины сторон четырехугольника по координатам

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Длины сторон четырехугольника по координатам

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Длины сторон четырехугольника по координатам

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Длины сторон четырехугольника по координатами Длины сторон четырехугольника по координатамПроведите с помощью чертёжного угольника и линейки через точки Длины сторон четырехугольника по координатампараллельные прямые, которые пересекут сторону ВС этого угла в точках Длины сторон четырехугольника по координатамПри помощи циркуля сравните длины отрезков Длины сторон четырехугольника по координатамСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Доказать: Длины сторон четырехугольника по координатам

Доказательство. Проведём через точки Длины сторон четырехугольника по координатампрямые Длины сторон четырехугольника по координатампараллельные ВС. Длины сторон четырехугольника по координатампо стороне и прилежащим к ней углам. У них Длины сторон четырехугольника по координатампо условию, Длины сторон четырехугольника по координатамкак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Длины сторон четырехугольника по координатами Длины сторон четырехугольника по координатамкак противоположные стороны параллелограммов Длины сторон четырехугольника по координатам

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Длины сторон четырехугольника по координатам

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Длины сторон четырехугольника по координатам

Отложим на луче АС пять равных отрезков: АА,Длины сторон четырехугольника по координатамПроведём прямую Длины сторон четырехугольника по координатам. Через точки Длины сторон четырехугольника по координатампроведём прямые, параллельные прямой Длины сторон четырехугольника по координатам. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Длины сторон четырехугольника по координатам, так как точки М и N — середины сторон АВ и ВС.

Длины сторон четырехугольника по координатам

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Длины сторон четырехугольника по координатам(рис. 122), AD = BD, СЕ= BE.

Длины сторон четырехугольника по координатам

Доказать: Длины сторон четырехугольника по координатам

Доказательство. 1) Пусть DE- средняя линия Длины сторон четырехугольника по координатам. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Длины сторон четырехугольника по координатам. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Длины сторон четырехугольника по координатам

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Длины сторон четырехугольника по координатам

Поэтому Длины сторон четырехугольника по координатам. КР— средняя линия треугольника ADC. Поэтому КР || АС и Длины сторон четырехугольника по координатам

Получаем: MN || АС и КР || АС, отсюда MN || КРДлины сторон четырехугольника по координатам, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Длины сторон четырехугольника по координатам

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Длины сторон четырехугольника по координатам

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Длины сторон четырехугольника по координатам

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Длины сторон четырехугольника по координатам= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Длины сторон четырехугольника по координатам

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Длины сторон четырехугольника по координатамno стороне и прилежащим к ней углам. У них CF = FD по условию, Длины сторон четырехугольника по координатамкак вертикальные, Длины сторон четырехугольника по координатамвнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Длины сторон четырехугольника по координатам

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Длины сторон четырехугольника по координатамравнобедренный. Поэтому Длины сторон четырехугольника по координатамсоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Длины сторон четырехугольника по координатам

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Длины сторон четырехугольника по координатам

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Длины сторон четырехугольника по координатамДлины сторон четырехугольника по координатам

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Длины сторон четырехугольника по координатам— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Длины сторон четырехугольника по координатам

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Длины сторон четырехугольника по координатам. По свойству внешнего угла треугольника, Длины сторон четырехугольника по координатамДлины сторон четырехугольника по координатам— равнобедренный (ОВ= OA = R). Поэтому Длины сторон четырехугольника по координатамизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Длины сторон четырехугольника по координатам

Из доказанного в первом случае следует, что Длины сторон четырехугольника по координатамизмеряется половиной дуги AD, a Длины сторон четырехугольника по координатам— половиной дуги DC. Поэтому Длины сторон четырехугольника по координатамизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Длины сторон четырехугольника по координатам

Длины сторон четырехугольника по координатам

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Длины сторон четырехугольника по координатам

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Длины сторон четырехугольника по координатамкак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Длины сторон четырехугольника по координатам, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Длины сторон четырехугольника по координатам

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Длины сторон четырехугольника по координатам(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Длины сторон четырехугольника по координатам(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Длины сторон четырехугольника по координатам

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Длины сторон четырехугольника по координатам

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Длины сторон четырехугольника по координатам

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Длины сторон четырехугольника по координатам

Доказать: Длины сторон четырехугольника по координатам

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Длины сторон четырехугольника по координатам

Тогда Длины сторон четырехугольника по координатам

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Длины сторон четырехугольника по координатам

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Длины сторон четырехугольника по координатам

Докажем, что Длины сторон четырехугольника по координатам. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Длины сторон четырехугольника по координатам. По свойству равнобокой трапеции, Длины сторон четырехугольника по координатам

Тогда Длины сторон четырехугольника по координатами, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Длины сторон четырехугольника по координатам

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Длины сторон четырехугольника по координатам

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Длины сторон четырехугольника по координатамцентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Длины сторон четырехугольника по координатамвписанного в окружность. Действительно,

Длины сторон четырехугольника по координатам

Следовательно, четырёхугольник Длины сторон четырехугольника по координатам— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Длины сторон четырехугольника по координатам

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Длины сторон четырехугольника по координатам

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

📺 Видео

№1049. Найдите углы треугольника с вершинами А (-1; √3), В(1;-√3 )Скачать

№1049. Найдите углы треугольника с вершинами А (-1; √3), В(1;-√3 )
Поделиться или сохранить к себе: