Формулы для площадей четырехугольников |
Вывод формул для площадей четырехугольников |
Вывод формулы Брахмагупты для площади вписанного четырехугольника |
В данном разделе рассматриваются только выпуклые фигуры, и считается известной формула:
которая позволяет найти площадь прямоугольника прямоугольника с основанием a и высотой b.
Видео:№478. В выпуклом четырехугольнике диагонали взаимно перпендикулярны. Докажите, что площадьСкачать

Формулы для площадей четырехугольников
| Четырехугольник | Рисунок | Формула площади | Обозначения | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Прямоугольник | ![]() | S = ab | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Параллелограмм | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Квадрат | ![]() | S = a 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | S = 4r 2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Ромб | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Трапеция | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | S = m h | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Дельтоид | ![]() | S = ab sin φ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Произвольный выпуклый четырёхугольник | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Вписанный четырёхугольник | ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Прямоугольник | ||
![]() | ||
![]() | ||
![]() | ||
| Параллелограмм | ||
![]() | ||
![]() | ||
![]() | ||
| Квадрат | ||
![]() | S = a 2 где | |
![]() | S = 4r 2 | |
![]() | ||
![]() | ||
| Ромб | ||
![]() | ||
![]() | ||
![]() | ||
![]() | ||
![]() | ||
| Трапеция | ||
![]() | ||
![]() | ||
![]() | ||
![]() | ||
| Дельтоид | ||
![]() | ||
![]() | ![]() где | |
![]() | ||
![]() | ||
| Произвольный выпуклый четырёхугольник | ||
![]() | ||
| Вписанный четырёхугольник | ||
![]() | ||
| Прямоугольник |
![]() |
где
a и b – смежные стороны

где
d – диагональ,
φ – любой из четырёх углов между диагоналями

где
R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями
Формула получается из верхней формулы подстановкой d = 2R

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a и b – смежные стороны,
φ – угол между ними

φ – любой из четырёх углов между ними

где
a – сторона квадрата



Получается из верхней формулы подстановкой d = 2R

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a – сторона,
φ – любой из четырёх углов ромба



где
r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

где
a и b – основания,
h – высота


φ – любой из четырёх углов между ними

где
a и b – основания,
c и d – боковые стороны ,

где
a и b – неравные стороны,
φ – угол между ними

где
a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

где
a и b – неравные стороны,
r – радиус вписанной окружности


φ – любой из четырёх углов между ними

где
a, b, c, d – длины сторон четырёхугольника,
p – полупериметр
Формулу называют «Формула Брахмагупты»
Видео:Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.Скачать

Вывод формул для площадей четырехугольников
Утверждение 1 . Площадь выпуклого четырёхугольника можно найти по формуле
Доказательство . В соответствии с рисунком 1 справедливо равенство:
что и требовалось доказать.
Утверждение 2 . Площадь параллелограмма параллелограмма можно найти по формуле
где a – сторона параллелограмма, а ha – высота высота высота , опущенная на эту сторону (рис. 2).
Доказательство . Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому
что и требовалось доказать.
Утверждение 3 .Площадь параллелограмма параллелограмма можно найти по формуле
где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).
то, в силу утверждения 2, справедлива формула
что и требовалось доказать.
Утверждение 4 . Площадь ромба ромба можно найти по формуле

где r – радиус вписанной в ромб окружности, а φ – любой из четырёх углов ромба (рис.4).
что и требовалось доказать.
Утверждение 5 . Площадь трапеции можно найти по формуле

где a и b – основания трапеции, а h – высота высота высота (рис.5).
Доказательство . Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD . Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам), то площадь трапеции ABCD равна площади треугольника ABF . Поэтому
что и требовалось доказать.
Утверждение 6 . Площадь трапеции трапеции можно найти по формуле
где a и b – основания, а c и d – боковые стороны трапеции ,
(рис.6).
Доказательство . Воспользовавшись теоремой Пифагора, составим следующую систему уравнений с неизвестными x, y, h (рис. 6):

что и требовалось доказать.
Утверждение 7 . Площадь дельтоида, дельтоида, можно найти по формуле:
где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).
Доказательство . Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D , а биссектрисы углов A и C пересекаются в некоторой точке O , лежащей на диагонали BD . Точка O и является центром вписанной в дельтоид окружности.
Если r – радиус вписанной в дельтоид окружности, то
Видео:ОГЭ Задание 24 Площадь выпуклого четырехугольника с перпендикулярными диагоналямиСкачать

Урок геометрии в 8-м классе по теме «Площадь четырехугольника, диагонали которого взаимно перпендикулярны»
Разделы: Математика
Образовательная цель: Получение формулы для нахождения площади выпуклого четырехугольника со взаимно перпендикулярными диагоналями; повторение формул площади параллелограмма, ромба, треугольника, развитие математического мышления учащихся, повышение их интереса к истории развития математики, к изучению геометрии посредством использования цифровых образовательных ресурсов.
Тип урока: урок усвоения новых знаний.
Особенности методики: Использование компьютерной презентации и ресурсов Интернет, организация поисково-аналитической работы учащихся с целью реализации основных образовательных задач урока.
Видео:Площадь четырёхугольника через диагоналиСкачать

Площадь вписанного четырехугольника
Как найти площадь вписанного четырехугольника?

Площадь вписанного четырёхугольника может быть найдена по формуле Брахмагупты:
где p — полупериметр четырёхугольника, то есть
(формулу Герона можно рассматривать как частный случай этой формулы при d=0).

Из треугольника ABC по теореме косинусов
Аналогично, из треугольника ADC
Так как четырехугольник ABCD вписан в окружность,
Приравниваем правы части равенств для AC²
Найдём синус этого угла, используя основное тригонометрическое тождество
(так как их сумма равна 180º, а sin(180º-α )=sinα).
В частных случаях: если в окружность вписан правильный четырёхугольник (то есть квадрат), прямоугольник либо четырёхугольник, диагонали которого взаимно перпендикулярны — решение задачи может быть упрощено.
Площадь любого четырёхугольника, в том числе, и вписанного, равна половине произведения его диагоналей на синус угла между ними:
В следующий раз рассмотрим конкретные примеры нахождения площади вписанного четырёхугольника.
📺 Видео
(Атанасян, 478. Геометрия 7-9) В выпуклом четырёхугольнике диагонали взаимно перпендикулярны.Скачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

площадь трапеции со взаимно перпендикулярными диагоналямиСкачать

ОГЭ по математике. Площадь четырехугольника можно вычислить по формуле (вар. 5)Скачать

КАК найти площадь трапеции? Геометрия 8 класс | МатематикаСкачать

Геометрия Докажите, что площадь выпуклого четырехугольника диагонали которого перпендикулярны равнаСкачать

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Площади фигур. Сохраняй и запоминай!#shortsСкачать

Площадь равнобедренной трапеции с перпендикулярными диагоналямиСкачать

#27. Задание 3: вычисление площадейСкачать

8 класс, 15 урок, Площадь трапецииСкачать

Площади фигур - треугольника, параллелограмма, трапеции, ромба. Формула Пика и ЕГЭСкачать

8 класс, 13 урок, Площадь параллелограммаСкачать

Задание 26 Вычисление площади трапеции через диагоналиСкачать

Геометрия 8. Урок 13 - Площадь четырехугольников. ЗадачиСкачать

Формулы для площадей четырехугольников






,













































