Задание 26. Четырёхугольник ABCD со сторонами АВ = 12 и CD = 30 вписан в окружность. Диагонали АС и BD пересекаются в точке K, причём угол AKB = 60°. Найдите радиус окружности, описанной около этого четырёхугольника.
Углы как вертикальные. Проведем отрезок DN параллельный отрезку AC. В этом случае — накрест лежащие при параллельных прямых AC и DN и секущей BD.
Четырехугольник DNAB вписан в окружность, следовательно,
Далее, как накрест лежащие при параллельных прямых AC, DN и секущей AD, следовательно, дуга AN равна дуге DC, откуда AN=DC=30.
Рассмотрим треугольник NAB вписанный в окружность. По теореме косинусов, имеем:
По теореме синусов можно записать:
,
где R – радиус описанной окружности. Из последнего выражения:
Видео:Четырёхугольник ABCD со сторонами AB = 40 и CD = 10 вписан в окружность. Диагонали #огэ #математикаСкачать
Задачи №26 на ГИА по математике
материал для подготовки к егэ (гиа) по геометрии (9 класс) на тему
В работе представлена подборка из 40 задач по геометрии повышенного уровня сложности из Открытого Банка заданий ГИ А с подробными решениями и хорошими чертежами. Материал может быть полезен как для учителей математики так и для учащихся.
Видео:В четырехугольник ABCD вписана окружность, AB = 10, BC = 11 и CD = 15. Найдите четвертую сторону.Скачать
Скачать:
Вложение | Размер |
---|---|
zadachi_no_26_na_gia_po_matematike.docx | 306.8 КБ |
Бесплатный марафон подготовки к ЕГЭ на зимних каникулах
Учи.Дома запускает бесплатный марафон в котором каждый день. В течении 5 дней утром ты будешь получать одно задание по выбранному предмету, а вечером его решение. Твоя задача, успеть выполнение задание до того как получишь ответ.
Бесплатно, онлайн, подготовка к ЕГЭ
Видео:Урок 2. Описанная окружность около четырехугольника. Задача из ОГЭ| Подобные треугольникиСкачать
Предварительный просмотр:
- Задание №361445 стр.32
Четырёхугольник ABCD со сторонами AB =25 и CD =16 вписан в окружность. Диагонали AC и BD пересекаются в точке K , причём ∠ AKB =60 ∘ . Найдите радиус окружности, описанной около этого четырёхугольника
Проведём BF ║АС, тогда четырёхугольник АВСD – равнобедренная трапеция,
∠ DBC = ∠ DKC (по свойству соответственных углов при BF║AC и секущей BD).
В вписанном четырёхугольнике DBFC ∠ DCF = 180° — ∠ DBF
Из треугольника DCF по теореме косинусов имеем: DF 2 = 25 2 + 16 2 + 2 ∙16 ∙25∙ 0,5.
Из треугольника DВF: 2R = = 2 ; R = .
Четырёхугольник ABCD со сторонами AB =5 и CD =17 вписан в окружность. Диагонали AC и BD пересекаются в точке K , причём ∠ AKB =60 ∘ . Найдите радиус окружности, описанной около этого четырёхугольника.
Четырёхугольник ABCD со сторонами AB =39 и CD =12 вписан в окружность. Диагонали AC и BD пересекаются в точке K , причём ∠ AKB =60° . Найдите радиус окружности, описанной около этого четырёхугольника.
Четырёхугольник ABCD со сторонами AB =43 и CD =4 вписан в окружность. Диагонали AC и BD пересекаются в точке K , причём ∠ AKB =60 ∘ . Найдите радиус окружности, описанной около этого четырёхугольника.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K . Найдите площадь параллелограмма, если BC =19 , а расстояние от точки K до стороны AB равно 7.
По свойству биссектрис углов параллелограмма ABM и ABN равнобедренные:
AB = BM и AB = AN, следовательно BM = AN.
Так как BM = AN и BM ║ AN, то четырёхугольник ABMN – параллелограмм, а так как AB = AN, то ABMN – ромб.
По свойству ромба ABК = MКВ = AKN (по двум катетам),
тогда KP = KS = KT = 7(как высоты равных треугольников, проведённые к соответственно равным сторонам).
Отрезки KP и KS лежат на одной прямой, ST — высота параллелограмма ABCD,
ST = SK + KT; ST = 7 + 7 =14
S ABCD = AD ∙ ST; S ABCD = 19 ∙ 7=133
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K . Найдите площадь параллелограмма, если BC =11 , а расстояние от точки K до стороны AB равно 3.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K . Найдите площадь параллелограмма, если BC =12 , а расстояние от точки K до стороны AB равно 9.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K . Найдите площадь параллелограмма, если BC =19 , а расстояние от точки K до стороны AB равно 10.
На стороне BC остроугольного треугольника ABC ( AB ≠ AC ) как на диаметре построена полуокружность, пересекающая высоту AD в точке M , AD =90 , MD =69 , H — точка пересечения высот треугольника ABC . Найдите AH .
Проведем ВЕ. Так как ВС – диаметр, то ∠ ВАС =90 ̊ , следовательно ВЕ – высота и
По свойству отрезков секущих АЕ ∙АС = АМ ∙АК.
АМ = AD – MD, AM = 90 – 69 = 21
Так как хорда МК перпендикулярна диаметру ВС, то MD = DK = 69.
AK = AM + MD + DK, AK = 21+ 69 + 69 = 159.
AEH (по двум углам: А – общий угол, углы ADC и AEH –прямые)
На стороне BC остроугольного треугольника ABC ( AB ≠ AC ) как на диаметре построена полуокружность, пересекающая высоту AD в точке M , AD =49 , MD =42 , H — точка пересечения высот треугольника ABC . Найдите AH .
На стороне BC остроугольного треугольника ABC ( AB ≠ AC ) как на диаметре построена полуокружность, пересекающая высоту AD в точке M , AD =27 , MD =18 , H — точка пересечения высот треугольника ABC . Найдите AH .
На стороне BC остроугольного треугольника ABC ( AB ≠ AC ) как на диаметре построена полуокружность, пересекающая высоту AD в точке M , AD =63 , MD =21 , H — точка пересечения высот треугольника ABC . Найдите AH .
Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C . Найдите длину отрезка KP , если AP =7 , а сторона BC в 1,4 раза меньше стороны AB .
Решение:
АВР и АСК подобны (по двум углам, А – общий угол, углы АВР и АСК – вписанные, опираются на дугу РК), значит или
Тогда АВС и АРК подобны (по двум сторонам и углу между ними, так как , А – угол заключенный между пропорциональными сторонами), следовательно ;
Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C . Найдите длину отрезка KP , если AK =21 , а сторона AC в 1,5 раза больше стороны BC .
Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C . Найдите длину отрезка KP , если AK =9 , а сторона AC в 3 раза больше стороны BC .
Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C . Найдите длину отрезка KP , если AP =6 , а сторона BC в 1,5 раза меньше стороны AB .
Из вершины прямого угла C треугольника ABC проведена высота CP . Радиус окружности, вписанной в треугольник BCP , равен 60, тангенс угла BAC равен . Найдите радиус окружности, вписанной в треугольник ABC .
САР = ВСР, тогда tg ∠ BCP = =
Пусть BP = 4x, CP = 3x, тогда BC = 5x
R BCP = = = x, x = 60, значит BP = 240, CP = 180, BC = 300
tg ∠ ВАС = , , , АС = 225
Из вершины прямого угла C треугольника ABC проведена высота CP . Радиус окружности, вписанной в треугольник BCP , равен 96, тангенс угла BAC равен . Найдите радиус окружности, вписанной в треугольник ABC .
Из вершины прямого угла C треугольника ABC проведена высота CP . Радиус окружности, вписанной в треугольник BCP , равен 24, тангенс угла BAC равен . Найдите радиус окружности, вписанной в треугольник ABC .
Из вершины прямого угла C треугольника ABC проведена высота CP . Радиус окружности, вписанной в треугольник ACP , равен 12 см, тангенс угла ABC равен 2,4 . Найдите радиус вписанной окружности треугольника ABC .
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM =7 и MB =9 . Касательная к описанной окружности треугольника ABC , проходящая через точку C , пересекает прямую AB в точке D . Найдите CD .
∠ АВС – вписанный, ∠ АВС =
∠АСD – угол между диаметром и хордой, ∠ АСD = , следовательно ∠ АВС = ∠АСD
∆DBC ∾∆DCA ( по двум углам; ∠D – общий, ∠ DВС = ∠АСD)
= , (по свойству биссектрисы треугольника)
DB = DA + AB; = + 16 ⇨ DC = 36,5
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM =5 и MB =10 . Касательная к описанной окружности треугольника ABC , проходящая через точку C , пересекает прямую AB в точке D . Найдите CD .
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM =9 и MB =12 . Касательная к описанной окружности треугольника ABC , проходящая через точку C , пересекает прямую AB в точке D . Найдите CD .
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM =10 и MB =18 . Касательная к описанной окружности треугольника ABC , проходящая через точку C , пересекает прямую AB в точке D . Найдите
В треугольнике ABC известны длины сторон AB =84 , AC =98 , точка O — центр окружности, описанной около треугольника ABC . Прямая BD , перпендикулярная прямой AO , пересекает сторону AC вточке D .
Найдите CD .
Пусть прямая BD, перпендикулярная прямой АО пересекает сторону АС в точке О, а окружность – в точке К. ВК ∩ АО = L.
Так как хорда ВК перпендикулярна диаметру АМ, то BL = KL и ᴗАВ = ᴗАК.
Следовательно ∠АСВ = ∠АВК (как вписанные углы, опирающиеся на равные дуги), значит
∆ABD ∾ ∆ACB (по двум углам: ∠А – общий, ∠АСВ = ∠АВК).
В треугольнике ABC известны длины сторон AB =40 , AC =64 , точка O — центр окружности, описанной около треугольника ABC . Прямая BD , перпендикулярная прямой AO , пересекает сторону AC вточке D .
Найдите CD .
В треугольнике ABC известны длины сторон AB =30 , AC =100 , точка O — центр окружности, описанной около треугольника ABC . Прямая BD , перпендикулярная прямой AO , пересекает сторону AC в точке D .
Найдите CD .
В треугольнике ABC известны длины сторон AB =12 , AC =72 , точка O — центр окружности, описанной около треугольника ABC . Прямая BD , перпендикулярная прямой AO , пересекает сторону AC в точке D .
Найдите CD .
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 96. Найдите стороны треугольника ABC .
Пусть ВЕ – биссектриса АВС, АD – медиана АВС, ВЕ = АD = 96, ВЕ ⏊ АD.
∆ BOD = ∆ BOA (BO — общая, ∠ BOD = ∠ BOA = 90 ° , ∠ OBD = ∠ OBA), тогда АВ = BD = DC и AO = OD = 48
Пусть АВ = BD = DC = x
Проведем СF ⏊ BE. ∆ AOE ∾ ∆ CFE (по двум углам), значит , но (по свойству биссектрисы треугольника), тогда = ; , CF = 96
Так как BD = DC и OD ∥ FC, то по теореме Фалеса ВО = ОF.
Пусть OE = y, EF = 2y, тогда OB = 3y, BE = 4y; ВЕ = 96, 4у = 96, у = 24, ОВ = 72
В ∆ BOD: BOD = 90 ° , OD = 48, OB = 72, тогда BD = = = 8 = 24 ⇨ AB = BD = 24 , BC = 48
∆ AOE: AO = 48, OE = 24, AOE = 90 °; AE = = 24 ⇨ CE = 48 AC = 72 .
Ответ: 24 , 48 , 72 .
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 168. Найдите стороны треугольника ABC .
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 16. Найдите стороны треугольника ABC .
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 164. Найдите стороны треугольника ABC .
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC .
В ∆ АВС АН = СН = 6( по условию)
СН = СЕ = СD = 6 (по свойству отрезков, касательных к окружности).
Проведем радиусы окружностей OD и KE; D и Е – точки касания окружностей с касательной ВС, следовательно OD ⏊ BC и KE ⏊ BC, значит OD ∥ KE, тогда четырёхугольник KEDO – трапеция.
Пусть КН = КЕ = х. Проведем КР ∥ ЕD. В ∆ОКР имеем: КР = 12, ОК = 7,5 + х, ОР = 7,5 – х
По теореме Пифагора: ОК 2 = ОР 2 + КР 2 ; (7,5 + х) 2 = (7,5 – х) 2 + 12 2
30х = 144; х = 4,8. Итак, R = х =4,8.
Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC .
Основание AC равнобедренного треугольника ABC равно 8. Окружность радиуса 5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC .
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 6 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC .
Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD .
Проведем радиусы окружностей ОА и РС. Так как радиусы проведены в точки касания окружностей с прямой АС, то они перпендикулярны к касательной: ОА ⏊ АС и РС ⏊ АС , следовательно ОА ∥ РС. Четырёхугольник ОАРС – трапеция. ОА = 25, РС = 100, ОР = 125. Проведем ОЕ ∥ АС. В ∆РОЕ: ∠ОЕР = 90°, РЕ = 100 – 25 = 75, ОР = 125. По теореме Пифагора
ОЕ 2 = ОР 2 – РЕ 2 , ОЕ = = = 100, ОЕ = АС = 100.
∆SOA ∾∆SPC (∠S – общий, ∠SAO =∠ SCP). , , 4 = 1 + , SA = .
∆SFC: cos , SC = SA + AC = , SF =
Окружности радиусов 45 и 55 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD .
Окружности радиусов 42 и 84 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD .
Окружности радиусов 4 и 60 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD .
Видео:3 правила для вписанного четырехугольника #shortsСкачать
По теме: методические разработки, презентации и конспекты
Логические задачи для 5 класса по математике
Логические задачи по математике для 5 класса, для детей, которые интересуются математикой.
Презентация «Ожившие задачи и теоремы» (ЖМ) учителя математики Монаковой Клары Захаровны.
Задачи на построение и теоремы (7-8 класс) выполнены в прогамме «Живая геометрия» как пример применения этой программы в преподавании геометрии.
Решение задач С4 на ЕГЭ по математике
Материал для консультации. Может быть полезен учителям и учащимся 9 — 11 классов при подготовке к экзаменам.
Задачи на работу. ЕГЭ по математике В13.
Решение задач на работу. Подробно, с объяснениями, разные типы задач (более десяти). Необходимо для подготовки к ЕГЭ по математике в части В13.
Задачи на работу. ЕГЭ по математике В13.
Решение задач на работу. С объяснениями, понятно доступно. Для выпускников, подготовка к ЕГЭ.
Задачи межпредметного смысла на уроках математики. Задачи природно — экологического содержания для 6 класса
Данная презентация содержит задачи экологической направленности и может быть полезна учителям математики при подготовке уроков и внеклассных мероприятий по ФГОС.
Методическая разработка по математике «Решение тестовых задач Единого Государственного Экзамена по математике: задачи на движение»
Решения тестовых задач ЕГЭ по математике по теме «Задачи на движение» всегда вызывают сложности у учащихся. Методическая разработка сделана для того ,чтоб было более ясно и проще выполнять данные зада.
Видео:Все типы четырёхугольников в задании №12 ЕГЭ по базовой математике + профильСкачать
Четырехугольник ABCD вписан в окружность
Четырехугольник ABCD со сторонами AB=40 и CD=10 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠AKB=60º. Найти радиус окружности, описанной около этого четырёхугольника.
Дано : ABCD — четырёхугольник, вписанный в окружность (O;R), AB=40, CD=10, AC∩BD=K, ∠AKB=60º
Радиус описанной около четырёхугольника окружности можно найти как радиус окружности, описанной около любого из треугольников, образованной вершинами четырёхугольника, например, около треугольника ABC. Если использовать формулу
для стороны AB, то искомый радиус
Длина AB известна. Значит, задача сводится к нахождению синуса угла ACB.
Рассмотрим треугольники ABK и DCK.
2)∠AKB=∠DKC (как вертикальные).
Следовательно, треугольники ABK и DCK подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
Пусть CK=x, тогда BK=4x.
Рассмотрим треугольник BCK.
∠BKC+∠AKB=180º (как смежные), отсюда ∠BKC=180º-∠AKB=120º. По теореме косинусов
📹 Видео
2122 в четырёхугольник ABCD вписана окружностьСкачать
Задание 25 Огэ по математикеСкачать
Геометрия Четырёхугольник ABCD со сторонами AB = 2 и CD = 5 вписан в окружность. Диагонали AC и BDСкачать
2147 стороны четырёхугольника ABCD AB BC CD и AD стягивают дугиСкачать
Четырёхугольник, вписанный в окружность.Скачать
ЕГЭ 2023 математика Вариант 5 задача 1Скачать
ЗАДАНИЕ 6 из ЕГЭ_11Скачать
16) Четырехугольник АВСD описан около окружности, AD=7, DC=12, BC=13. Найдите AB. Математика огэ.Скачать
ОГЭ 2024 задание 25 вариант 28Скачать
ОГЭ по математике, задание 26, тренировочный вариант 1Скачать
27939Скачать
Задание 24 ОГЭ по математике #6Скачать
Четырехугольники, вписанные в окружность. 9 класс.Скачать
ОГЭ. Задание 24. Геометрическая задача на вычисление.Скачать
Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC = 12, AB = 7. Найдите DO.Скачать