Выясним, каким может быть взаимное расположение двух окружностей.
Две окружности могут пересекаться, не пересекаться либо касаться друг друга.
I. Пересекающиеся окружности имеют две общие точки.
Расстояние между центрами двух пересекающихся окружностей больше разности, но меньше суммы их радиусов:
II. Не пересекающиеся окружности не имеет общих точек.
Если одна окружность лежит внутри другой, то расстояние между центрами меньше разности их радиусов:
Если одна окружность находится вне другой, расстояние между центрами больше суммы их радиусов:
R + r]» title=»Rendered by QuickLaTeX.com»/>
III. Касающиеся окружности имеют одну общую точку — точку касания.
При внешнем касании расстояние между центрами окружностей равно сумме их радиусов:
При внутреннем касании расстояние между центрами равно разности радиусов:
Концентрические окружности разного радиуса не пересекаются. Расстояние между центрами концентрических окружностей равно нулю: O1O2=0.
Видео:Две окружности пересекаются, если радиус одной ... | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Окружность. Относительное взаимоположение окружностей.
Если две окружности имеют только одну общую точку, то говорят, что они касаются.
Если же две окружности имеют две общие точки, то говорят, что они пересекаются.
Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.
Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).
Теорема.
Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.
Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.
Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.
Следствие.
Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.
Теоремы.
1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.
2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.
Признаки различных случаев относительного положения окружностей.
Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.
Эти окружности могут находиться в следующих 5-ти относительных положениях:
1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .
2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.
3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.
4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.
5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,
d R + R1, то окружности расположены одна вне другой, не касаясь.
2. Если d = R + R1, то окружности касаются извне.
3. Если d R — R1, то окружности пересекаются.
4. Если d = R — R1, то окружности касаются изнутри.
5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.
Видео:Теорема о числе точек пересечения двух окружностейСкачать
Геометрия. 9 класс
Две окружности могут пересекаться, не пересекаться либо касаться друг друга.
Перейдем к анализу возможных случаев расположения двух окружностей.
Рассмотрим окружность с центром О1 и окружность с центром О2. Тогда расстояние между их центрами равно О1О2.
I. Пересекающиеся окружности имеют две общие точки.
Расстояние между центрами двух пересекающихся окружностей больше разности, но меньше суммы их радиусов:
II. Не пересекающиеся окружности не имеет общих точек.
Если одна окружность лежит внутри другой, то расстояние между центрами меньше разности их радиусов:
Если одна окружность находится вне другой, расстояние между центрами больше суммы их радиусов:
III. Касающиеся окружности имеют одну общую точку – точку касания.
При внешнем касании расстояние между центрами окружностей равно сумме их радиусов:
При внутреннем касании расстояние между центрами равно разности радиусов:
Если центры окружностей совпадают, то такие окружности называются концентрическими.
Концентрические окружности разного радиуса не пересекаются: О1О2 = 0
В случае равенства радиусов они совпадают.
Если же радиусы этих окружностей не равны, то одна из них лежит внутри другой – образуется кольцо.
Кольцом называют фигуру, заключенную между концентрическими окружностями.
Видео:Две окружности | Резерв досрока ЕГЭ-2019. Задание 16. Профильный уровень | Борис Трушин |Скачать
НАШИ ПАРТНЁРЫ
© Государственная образовательная платформа «Российская электронная школа»
📽️ Видео
54 Две окружностиСкачать
Две окружности на плоскости. Математика. 6 класс.Скачать
Всё про углы в окружности. Геометрия | МатематикаСкачать
Две окружности пересекаются в точках A и B Через точку A проведены диаметры AC и AD этих окружностеСкачать
Геометрия Две окружности пересекаются в точках P и Q. Прямая, проходящая через точку P, второйСкачать
Алгоритмы. Пересечение окружностейСкачать
Окружность и круг, 6 классСкачать
Задача. Две окружности касаются внутренним образом.Скачать
Две окружности. ОГЭ. Задача 26. Дополнительные построенияСкачать
9 класс, 8 урок, Взаимное расположение двух окружностейСкачать
ОГЭ Задание 25 Две окружностиСкачать
Две окружности/ Повторяем углыСкачать
Взаимное расположение окружностей. 7 класс.Скачать
Планиметрия 11 |mathus.ru| расстояние между центрами пересекающихся окружностейСкачать
Параметр про две окружности | Физтех-2019. Математика | Борис Трушин |Скачать
Геометрия 8 класс. Если две хорды окружности пересекаются, то AE·BE=DE·CEСкачать
Геометрия Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этихСкачать