Расчет точки на окружности

Уравнение окружности по трем точкам

Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.

Уравнение окружности

r 2 = (x — h) 2 + (y — k) 2

  • h,k — координаты центра Окружности
  • x,y — координаты точки окружности
  • r — радиус

Пример

Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)

Решение :

Подставляем координаты точек в формулу

  1. (2 — h) 2 + (2 — k) 2 = r 2
  2. (2 — h) 2 + (4 — k) 2 = r 2
  3. (5 — h) 2 + (5 — k) 2 = r 2

Шаг :2

Найдем значение k упрощая 1 и 2 уравнения

  • (2 — h) 2 + (2 — k) 2 = (2 — h) 2 + (4 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 4 — 4h + h 2 +16 — 8k + k 2
  • 8 — 4k = 20 — 8k
  • k= 3

Шаг :3

Найдем значение h упрощая уравнения 2 и 3

  • (2 — h) 2 + (2 — k) 2 = (5 — h) 2 + (5 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 25 — 10h + h 2 + 25 — 10k + k 2
  • 8 — 4k — 4h = 50 — 10h — 10k
  • 6k + 6h = 42

Подставив значение k=3 в уравнение

Получаем координаты точки центра (h,k) = ( 4,3 )

Шаг :4

Подставим значения h,k в формулу

  • r 2 = (x — h) 2 + (y — k) 2
  • r 2 = (2 — 4) 2 + (2 — 3) 2
  • r 2 = (-2) 2 + (-1) 2
  • r 2 = 5
  • r = 2.24

Шаг :5

Подставим значения h, k в уравнение окружности

(x — h) 2 + (y — k) 2

Уравнение окружности = (x — 4) 2 + (y — 3) 2

Видео:Как найти координаты точек на тригонометрической окружностиСкачать

Как найти координаты точек на тригонометрической окружности

Всё про окружность и круг

Окружность — это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R).
Значит, окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности.

Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.

Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.

Расчет точки на окружности

Расчет точки на окружности

Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2

Расчет точки на окружности

Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.

Расчет точки на окружности

Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.

Расчет точки на окружности

Квадрат касательной равен произведению секущей на ее внешнюю часть

Расчет точки на окружности

Центральный угол — это угол, вершина которого совпадает с центром окружности.

Дугой называется часть окружности, заключенная между двумя точками.

Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.

Расчет точки на окружности

Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.

Расчет точки на окружности

Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.

Расчет точки на окружности

Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.

Расчет точки на окружности

Периметр сектора: P = s + 2R.

Площадь сектора: S = Rs/2 = ПR 2 а/360°.

Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.

Видео:Как искать точки на тригонометрической окружности.Скачать

Как искать точки на тригонометрической окружности.

Вычисление положения точек в окружности

У меня есть немного пустой ум на этот момент. У меня есть проблема, когда мне нужно вычислить положение точек вокруг центральной точки, предполагая, что все они равноудалены от центра и друг от друга.

количество точек является переменной, так что это DrawCirclePoints(int x) Я уверен, что есть простое решение, но для жизни меня, я просто не вижу его:)

Видео:10 класс, 11 урок, Числовая окружностьСкачать

10 класс, 11 урок, Числовая окружность

11 ответов:

точка под углом тета на окружности, центр которой (x0,y0) и чей радиус r и (x0 + r cos theta, y0 + r sin theta) . Теперь выберите theta значения, равномерно расположенные между 0 и 2pi.

учитывая длину радиуса r и угол t в радианах и центре круга (h,k), вы можете вычислить координаты точки на окружности следующим образом (это псевдокод, вам придется адаптировать его к вашему языку):

вот решение с использованием C#:

пример вывода из DrawCirclePoints(8, 10, new Point(0,0)); :

используя один из приведенных выше ответов в качестве базы, вот пример Java / Android:

Я должен был сделать это в интернете, так что вот версия coffeescript @scottyab это ответ выше:

для завершения то, что вы описываете как «положение точек вокруг центральной точки(предполагая, что все они равноудалены от центра)» — это не что иное, как «полярные координаты». И вы просите способ преобразования между полярными и Декартовыми координатами, которая дается как x = r*cos(t) , y = r*sin(t) .

здесь R версия, основанная на ответе @Pirijan выше.

угол между каждой из ваших точек будет 2Pi/x таким образом, вы можете сказать, что для точек n= 0 to x-1 угол от определенной 0 точки равен 2nPi/x .

предполагая, что ваша первая точка находится в (r,0) (где r-расстояние от центральной точки), то положение относительно центральной точки будет:

на основе ответа выше от Даниила, вот мой взять с помощью Python3.

💡 Видео

Точки на числовой окружностиСкачать

Точки на числовой окружности

Тригонометрическая окружность. Как выучить?Скачать

Тригонометрическая окружность. Как выучить?

Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точекСкачать

Алгебра 10 класс. 20 сентября. Числовая окружность #6 координаты точек

Найти координаты точки единичной окружности полученной при повороте точки Ро(1;0) на угол π, 450°...Скачать

Найти координаты точки единичной окружности полученной при повороте точки Ро(1;0) на угол π, 450°...

Coordinates on Circle - Координаты точек окружностиСкачать

Coordinates on Circle - Координаты точек окружности

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Изобразить на единичной окружности точку.Скачать

Изобразить на единичной окружности точку.

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ - Единичная Окружность // Подготовка к ЕГЭ по Математике

Расчет угловых координат с окружности 👍Скачать

Расчет угловых координат с окружности 👍

Как видеть тангенс? Тангенс угла с помощью единичного круга.Скачать

Как видеть тангенс? Тангенс угла с помощью единичного круга.

Радиус и диаметрСкачать

Радиус и диаметр

Длина окружности. Математика 6 класс.Скачать

Длина окружности. Математика 6 класс.

Физика - движение по окружностиСкачать

Физика - движение по окружности

Движение материальной точки по окружности | Физика ЕГЭ, ЦТСкачать

Движение материальной точки по окружности | Физика ЕГЭ, ЦТ

"Парадоксальное" среднее расстояние между точками на окружностиСкачать

"Парадоксальное" среднее расстояние между точками на окружности

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ
Поделиться или сохранить к себе: