Биссектрисы углов параллелограмма при пересечении образуют четырехугольник

Биссектрисы углов параллелограмма при пересечении образуют четырехугольник

Решите задачу по данным рисунка.

Если биссектрисы углов параллелограмма, пересекаясь, образуют четырёхугольник, то он является прямоугольником, диагонали которого равны разности смежных сторон параллелограмма. Но вместо параллелограмма на рисунке дан прямоугольник, поэтому все его биссектрисы равны и образуют квадрат своим пересечением. Искомая площадь S квадрата равна квадрату его стороны, поэтому она равна 1 2 = 1.

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Докажите, что биссектрисы внешних углов параллелограмма при пересечении образуют прямоугольник, диагональ которого равна сумме двух соседних сторон параллелограмма.

Пусть биссектрисы внешних углов при вершинах B и C параллелограмма ABCD пересекаются в точке P, биссектрисы внешних углов при вершинах C и D — в точке Q, внешних углов при вершинах A и D — в точке R, внешних углов при вершинах A и B — в точке S.

Поскольку биссектрисы внутренних односторонних углов при параллельных прямых и секущей перпендикулярны, то PQRS — прямоугольник.

Пусть M — середина BC. Тогда PM — медиана прямоугольного треугольника BPC, поэтому PM = MC. Значит,

Биссектрисы углов параллелограмма при пересечении образуют четырехугольникMPC = Биссектрисы углов параллелограмма при пересечении образуют четырехугольникPCM = Биссектрисы углов параллелограмма при пересечении образуют четырехугольникPCK,

где K — точка на продолжении стороны DC за точку C. Следовательно , PM || CD. Аналогично докажем, что если N — середина AD, то RN = ND и RN || CD. Кроме того , MN || CD и MN = CD. Следовательно, точки M и N лежат на диагонали PR прямоугольника PQRS и

Видео:Биссектрисы углов параллелограмма или трапецииСкачать

Биссектрисы углов параллелограмма или трапеции

Биссектриса параллелограмма — свойства, признаки и теоремы

Аксиома параллельности прямых, которая приведена Евклидом в книге «Начала», служит основой для доказательства многих свойств биссектрисы параллелограмма. О них знали пифагорейцы. Но понятие о самой фигуре ввел именно Евклид. Она представляет собой четырехугольник с параллельными противоположными сторонами.

Биссектрисы углов параллелограмма при пересечении образуют четырехугольник

Видео:Биссектриса угла параллелограмма ▶ (Мини-ликбез №5)Скачать

Биссектриса угла параллелограмма ▶ (Мини-ликбез №5)

Равнобедренный треугольник в параллелограмме

Биссектриса параллелограмма может быть проведена из вершины острого или тупого угла фигуры. Доказательство теоремы о равнобедренности образуемых прямой треугольников в этих случаях имеет аналогичный порядок. Чтобы доказать утверждение, нужно знать признак равнобедренности треугольника:

Биссектрисы углов параллелограмма при пересечении образуют четырехугольник

С помощью аналогичных рассуждений можно доказать, что биссектриса тупого угла параллелограмма делит противоположную сторону на отрезки и отсекает от него равнобедренный треугольник.

Видео:№428. В параллелограмме, смежные стороны которого не равны, проведены биссектрисы углов.Скачать

№428. В параллелограмме, смежные стороны которого не равны, проведены биссектрисы углов.

Точка пересечения прямых

Согласно свойству, проведенные из смежных углов параллелограмма биссектрисы пересекаются в точке на противоположной стороне, если она в 2 раза больше меньшей. Доказать это утверждение можно следующим способом:

Биссектрисы углов параллелограмма при пересечении образуют четырехугольник

  • В равнобедренном треугольнике АВО сторона АО является биссектрисой четырехугольника АВСD.
  • Признак равнобедренности предполагает равенство АВ и ВО.
  • Согласно свойству, равенство СО и СD свидетельствует о равнобедренности треугольника СDО.
  • Стороны АВ и СD равны как противолежащие, из чего следует равенство ВО и СО.
  • Поскольку АВ и ВО равны, то ВО = СО, поэтому АВ равна половине ВС, значит большая сторона фигуры в 2 раза превышает величину меньшей.

    Доказательство свойства позволяет предположить, что биссектрисы смежных углов пересекаются внутри либо вне параллелограмма. При этом одна сторона больше или меньше половины другой. Если ее величина больше половины соседней, значит прямые пересекутся внутри фигуры.

    Биссектрисы, проведенные через смежные углы, пересекаются с продолжением противоположных сторон параллелограмма в вершинах ромба. В зависимости от величины другой стороны, ромб совпадает с ним либо обладает большим или меньшим периметром. Если частить с построением этой фигуры, то длины сторон параллелограмма будут бесконечными.

    Видео:Свойство биссектрис углов параллелограмма, прилежащих к одной сторонеСкачать

    Свойство биссектрис углов параллелограмма, прилежащих к одной стороне

    Свойства односторонних углов

    Параллелограмм АВСД имеет смежные углы при параллельных прямых АВ и СД, обозначенные а1 и а2. Для доказательства теоремы о перпендикулярности биссектрис нужно знать свойства смежных углов, сумма которых равна 180 градусам.

    Поскольку биссектрисы можно провести внутри острого или тупого угла параллелограмма, то величину смежного с ним внешнего угла можно сложить, получив 180 градусов. Если обозначить их через АО и ДЕ, то углы ОАВ и ЕДС будут равны половинам а1 и а2 соответственно. Так как а1 + а2 = 180, то (а1 + а2) / 2 = 90, значит АО и ДЕ образуют прямой угол АКД.

    Биссектрисы углов параллелограмма при пересечении образуют четырехугольник

    Применять свойство биссектрис можно при нахождении периметра фигуры. Должны быть известны данные о соотношениях или длинах отрезков, образованных при пересечении противолежащей стороны биссектрисой. Например, она делит на отрезки ВК и КС сторону параллелограмма ABCD, величины которых известны.

    Формула определения периметра будет иметь вид: P=2 (n+n+m). Где ВС=BК+КC=n+m, а АВ=ВК=n по свойству биссектрисы. С учетом признака равнобедренности треугольника можно построить эту прямую, дополнив рисунок фигуры без транспортира с помощью циркуля.

    Видео:ОГЭ Задание 25 Доказать что четырехугольник квадратСкачать

    ОГЭ Задание 25 Доказать что четырехугольник   квадрат

    Противолежащие углы и биссектрисы

    Согласно свойству параллельных прямых, биссектрисы a и b проходят параллельно друг другу. Они образуют внутри фигуры со сторонами mnkp другой параллелограмм, следовательно, он обладает параллельными противоположными сторонами. Прямые, на которых они лежат, соответствуют сторонам исходной фигуры, поэтому ее биссектрисы a и b являются равными.

    Углы, которые образованы отрезками a и m, а также b и k, согласно свойствам биссектрис и параллелограммов, равны. Противолежащие равные по величине углы, образованные отрезками mp и nk, можно разделить пополам. Прямая b, пересекающая отрезки n и p, образует с ними накрест лежащие углы, признак которых состоит в их равенстве. Они равны разделенным пополам противоположным и являются соответственными при параллельных прямых n и p.

    Видео:Геометрия Один из углов, образованных при пересечении биссектрисы угла параллелограмма с егоСкачать

    Геометрия Один из углов, образованных при пересечении биссектрисы угла параллелограмма с его

    Вершины образуемого прямоугольника

    Биссектрисы параллелограмма пересекаются в точках, представляющих собой вершины прямоугольника, что можно доказать следующим образом:

    Биссектрисы углов параллелограмма при пересечении образуют четырехугольник

  • Согласно исходным данным, параллелограмм ABCД имеет внешние углы, через вершины которых В и С проведены прямые, разделяющие их пополам.
  • Если К, М, Р и О представляют собой точки пересечения биссектрис, исходящей из вершин фигуры, то они образуют четырехугольник.
  • По свойству смежных внутренних углов, образуемых параллельными прямыми и секущей, все стороны четырехугольника КМРО перпендикулярны между собой.
  • Если через середину ВС фигуры провести медиану треугольника ВКС в параллелограмме, то эта точка Х разделит ВС на равные отрезки ВХ и СХ.
  • Отсюда следует равенство углов ХКС, КСХ и КСТ, где Т — это точка, принадлежащая прямой СД.
  • Вывод из доказательства: прямые СД и КХ параллельны.

    Аналогичным способом можно доказать параллельность других сторон прямой СД. Следовательно, диагональ КР образованного биссектрисами параллелограмма прямоугольника КМРО содержит точки Х и Т. Доказательство предполагает следующее равенство: КР = КХ + ХТ + ТР = ХС + СД + ТД = ВС + СД, поэтому величина диагонали равна сумме двух смежных сторон параллелограмма.

    Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

    Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

    Ромб и его диагонали

    Параллелограмм, имеющий биссектрису, которая совпадает с его диагональю, представляет собой ромб. Чтобы доказать это, нужно провести диагональ AC, соединяющую противоположные вершины ABCD. Способ доказательства теоремы основан на равенстве противолежащих углов параллелограмма.

    Биссектрисы углов параллелограмма при пересечении образуют четырехугольник

    Согласно свойству биссектрисы, отрезок АС делит пополам углы BCD и BAD. Они имеют одинаковую величину, поскольку противоположные углы равны. Диагональ АС — основание треугольников ACB и ACD. Согласно признаку равнобедренности АВ и АС, а также AD и CD, равны между собой. По свойству равенства противоположных сторон параллелограмма AB = CD и AD = BC.

    Фигура ABCD, представляющая собой по условию параллелограмм, имеет равные по величине AB, AD, BC и CD в соответствии с доказательством. Отсюда следует, что параллелограмм ABCD по определению ромб. В нем биссектриса АС — это его диагональ.

    Видео:Найдите угол между биссектрисами углов параллелограмма, прилежащих к одной сторонеСкачать

    Найдите угол между биссектрисами углов параллелограмма, прилежащих к одной стороне

    Примеры решения задач

    Биссектрисы смежных углов параллелограмма пересеклись в точке на его противолежащей стороне. Зная его меньшую сторону, можно найти большую, а также наоборот. Допустим, что длина меньшей стороны фигуры составляет 5 сантиметров.

    Обозначив вершины фигуры A, B, C, D, а точку на AD буквой Р, достаточно иметь в виду, что AD=AР+РD=AB+CD. Это доказывает признак равенства накрест лежащих углов СВР и АРВ, а также ВСР и СРD при параллельных прямых. Формула для нахождения большей стороны будет иметь вид: AD=2AB=10, поскольку AB = CD. При необходимости найти меньшую можно по формуле: AD=AB/2.

    Биссектрисы углов параллелограмма при пересечении образуют четырехугольник

    По условию задачи биссектриса, исходящая из острого угла параллелограмма, разделяет его противоположную сторону на отрезки 73 мм и 54 мм, если считать от вершины тупого угла. Требуется вычислить периметр параллелограмма ABCD. Точка Е делит сторону ВС на отрезки заданной длины, поскольку АЕ — биссектриса угла ВАD. Эта прямая представляет собой секущую для параллельных AD и BC.

    Отсекая равнобедренный треугольник АВЕ, биссектриса ВЕ является его основанием, поэтому сторона параллелограмма АВ равна отрезку ВЕ, длина которого по условию 73 мм. В сумме ВЕ и ЕС равны ВС, что составляет 127 мм. Отсюда периметр ABCD соответствует удвоенной сумме его сторон: Р = 2 (73+127) = 400 мм. Чтобы найти большую сторону параллелограмма ABCD при известном периметре 128 мм, можно использовать аналогичное доказательство равнобедренности треугольника.

    По условию соотношение отрезков, образуемых точкой пересечения биссектрисы DЕ с противоположной стороной ВС, равно 4:3, если считать от острого угла при вершине А. Из равенства противоположных сторон ABCD и признака равнобедренного треугольника следует AD=BC=АЕ=4х, а ЕВ=3х, поэтому CD=АЕ+ЕВ=4х+3х=7х. Зная периметр ABCD, можно составить уравнение Р=2 (7х+4х)=128. Отсюда 22х=128, а х=32, поэтому большая сторона параллелограмма CD=32*7=224 мм.

    💡 Видео

    Задание 25 Свойство биссектрис смежных углов параллелограммаСкачать

    Задание 25 Свойство биссектрис смежных углов параллелограмма

    ЧЕТЫРЕХУГОЛЬНИК 8 класс РЕШЕНИЕ ЗАДАЧ АтанасянСкачать

    ЧЕТЫРЕХУГОЛЬНИК 8 класс РЕШЕНИЕ ЗАДАЧ Атанасян

    Задача 6 №27827 ЕГЭ по математике. Урок 96Скачать

    Задача 6 №27827 ЕГЭ по математике. Урок 96

    Биссектриса параллелограммаСкачать

    Биссектриса параллелограмма

    Биссектриса параллелограммаСкачать

    Биссектриса параллелограмма

    Геометрия Точка пересечения биссектрис двух соседних углов параллелограмма принадлежит его сторонеСкачать

    Геометрия Точка пересечения биссектрис двух соседних углов параллелограмма принадлежит его стороне

    Параллельные прямые | Математика | TutorOnlineСкачать

    Параллельные прямые | Математика | TutorOnline

    №374. Биссектриса угла А параллелограмма ABCD пересекает сторону ВС в точке КСкачать

    №374. Биссектриса угла А параллелограмма ABCD пересекает сторону ВС в точке К

    Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрииСкачать

    Как правильно решить задание про четырёхугольник? / Разбор заданий на ОГЭ по геометрии

    ОГЭ 2 часть|Биссектрисы углов A и B трапеции/параллелограмма ABCD пересекаются в точке F. Найдите ABСкачать

    ОГЭ 2 часть|Биссектрисы углов A и B трапеции/параллелограмма ABCD пересекаются в точке F. Найдите AB

    Геометрия 8. Биссектрисы углов параллелограмма.Скачать

    Геометрия 8. Биссектрисы углов параллелограмма.
  • Поделиться или сохранить к себе: