Вписать прямоугольник в окружность

Четырехугольники, вписанные в окружность. Теорема Птолемея
Вписать прямоугольник в окружностьВписанные четырехугольники и их свойства
Вписать прямоугольник в окружностьТеорема Птолемея

Видео:В любой прямоугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

В любой прямоугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Вписать прямоугольник в окружность

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Вписать прямоугольник в окружность

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Вписать прямоугольник в окружность
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Вписать прямоугольник в окружность

ФигураРисунокСвойство
Окружность, описанная около параллелограммаВписать прямоугольник в окружностьОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаВписать прямоугольник в окружностьОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииВписать прямоугольник в окружностьОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаВписать прямоугольник в окружностьОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникВписать прямоугольник в окружность

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Вписать прямоугольник в окружность
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Вписать прямоугольник в окружность

Окружность, описанная около параллелограмма
Вписать прямоугольник в окружностьОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Вписать прямоугольник в окружностьОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Вписать прямоугольник в окружностьОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Вписать прямоугольник в окружностьОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Вписать прямоугольник в окружность
Окружность, описанная около параллелограмма
Вписать прямоугольник в окружность

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаВписать прямоугольник в окружность

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииВписать прямоугольник в окружность

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаВписать прямоугольник в окружность

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникВписать прямоугольник в окружность

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Вписать прямоугольник в окружность

Вписать прямоугольник в окружность

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Вписать прямоугольник в окружность

Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Вписать прямоугольник в окружность

Докажем, что справедливо равенство:

Вписать прямоугольник в окружность

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Вписать прямоугольник в окружность

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Вписать прямоугольник в окружность

откуда вытекает равенство:

Вписать прямоугольник в окружность(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Видео:Прямоугольник в окружностиСкачать

Прямоугольник в окружности

Радиус описанной окружности прямоугольника

Как известно, прямоугольником является четырехугольник с прямыми углами. Противоположные углы прямоугольника в сумме составляют 180°, соответственно, вокруг него можно описать одну окружность, при этом, вершины прямоугольника должны быть расположены на этой окружности. Центр прямоугольника и описанной вокруг него окружности размещен в месте пересечения диагоналей. Диагонали прямоугольника равны. Если известны стороны прямоугольника, можно рассчитать величину диагоналей по теореме Пифагора. Диагональ прямоугольника является в то же время и диаметром описанной окружности. R описанной окружности представляет половину диагонали прямоугольника и рассчитывается путем извлечения квадратного корня из суммы квадратов его сторон деленный на 2 или как половина его диагонали:

Вписать прямоугольник в окружностьВписать прямоугольник в окружность

d — диагональ;
a, b — величины сторон прямоугольника.

Если известны стороны прямоугольника или диагонали, можно быстро найти R описанной окружности с помощью калькулятора.

Видео:Любой прямоугольник можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать

Любой прямоугольник можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРА

Прямоугольник. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ прямоугольника, радиус описанной вокруг прямоугольника окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Прямоугольник − это параллелограмм, у которого все углы прямые (Рис.1).

Вписать прямоугольник в окружность

Можно дать и другое определение прямоугольника.

Определение 2. Прямоугольник − это четырехугольник, у которого все углы прямые.

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Свойства прямоугольника

Так как прямоугольник является параллелограммом, то все свойства параллелограмма верны и для прямоугольника.

  • 1. Стороны прямоугольника являются его высотами.
  • 2. Все углы прямоугольника прямые.
  • 3. Квадрат диагонали прямоугольника равен сумме квадратов его соседних двух сторон.
  • 4. Диагонали прямоугольника равны.
  • 5. Около любого прямоугольника можно описать окружность, при этом диаметр описанной окружности равна диагонали прямоугольника.

Длиной прямоугольника называется более длинная пара его сторон.

Шириной прямоугольника называется более короткая пара его сторон.

Видео:Геометрия Докажите, что если в прямоугольник можно вписать окружность, то этот прямоугольникСкачать

Геометрия Докажите, что если в прямоугольник можно вписать окружность, то этот прямоугольник

Диагональ прямоугольника

Определение 3. Диагональ прямоугольника − это отрезок, соединяющий две несмежные вершины прямоугольника.

Вписать прямоугольник в окружность

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. Прямоугольник имеет две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

Вписать прямоугольник в окружность
Вписать прямоугольник в окружность.(1)

Из равенства (1) найдем d:

Вписать прямоугольник в окружность.(2)

Пример 1. Стороны прямоугольника равны Вписать прямоугольник в окружность. Найти диагональ прямоугольника.

Решение. Для нахождения диаметра прямоугольника воспользуемся формулой (2). Подставляя Вписать прямоугольник в окружностьв (2), получим:

Вписать прямоугольник в окружность

Ответ: Вписать прямоугольник в окружность

Видео:№708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любойСкачать

№708. Докажите, что можно описать окружность: а) около любого прямоугольника; б) около любой

Окружность, описанная около прямоугольника

Определение 4. Окружность называется описанной около прямоугольника, если все вершины прямоугольника находятся на этой окружности (Рис.3):

Вписать прямоугольник в окружность

Видео:Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Формула радиуса окружности описанной около прямоугольника

Выведем формулу вычисления радиуса окружности, описанной около прямоугольника через стороны прямоугольника.

Нетрудно заметить, что радиус описанной около прямоугольника окружности равна половине диагонали (Рис.3). То есть

( small R=frac )(3)

Подставляя (3) в (2), получим:

( small R=frac<large sqrt> )(4)

Пример 2. Стороны прямоугольника равны Вписать прямоугольник в окружность. Найти радиус окружности, описанной вокруг прямоугольника.

Решение. Для нахождения радиуса окружности описанной вокруг прямоугольника воспользуемся формулой (4). Подставляя Вписать прямоугольник в окружностьв (4), получим:

Вписать прямоугольник в окружность
Вписать прямоугольник в окружность

Ответ: Вписать прямоугольник в окружность

Видео:ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Периметр прямоугольника

Определение 5. Периметр прямоугольника − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Периметр прямоугольника вычисляется формулой:

Вписать прямоугольник в окружность(5)

где ( small a ) и ( small b ) − стороны прямоугольника.

Пример 3. Стороны прямоугольника равны Вписать прямоугольник в окружность. Найти периметр прямоугольника.

Решение. Для нахождения периметра прямоугольника воспользуемся формулой (5). Подставляя Вписать прямоугольник в окружностьв (5), получим:

Вписать прямоугольник в окружность

Ответ: Вписать прямоугольник в окружность

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Формулы сторон прямоугольника через его диагональ и периметр

Выведем формулу вычисления сторон прямоугольника, если известны диагональ ( small d ) и периметр ( small P ) прямоугольника. Заметим: чтобы прямоугольник существовал, должно удовлетворяться условие ( small frac P2>d ) (это следует из неравенства треугольника).

Чтобы найти стороны прямоугольника запишем формулу Пифагора и формулу периметра прямоугольника:

Вписать прямоугольник в окружность(6)
Вписать прямоугольник в окружность(7)

Из формулы (7) найдем ( small b ) и подставим в (6):

Вписать прямоугольник в окружность(8)
Вписать прямоугольник в окружность(9)

Упростив (4), получим квадратное уравнение относительно неизвестной ( small a ):

Вписать прямоугольник в окружность(10)

Вычислим дискриминант квадратного уравнения (10):

Вписать прямоугольник в окружностьВписать прямоугольник в окружность(11)

Сторона прямоугольника вычисляется из следующих формул:

Вписать прямоугольник в окружность(12)

После вычисления ( small a ), сторона ( small b ) вычисляется или из формулы (12), или из (8).

Примечание. Легко можно доказать, что

( frac

>d ; ⇒ ; P>2cdot d ; ⇒ ) ( small P^2>4 cdot d^2 ; ⇒ ; 4d^2-P^2 2d .) Следовательно выполняется неравенство (*).

Пример 4. Диагональ прямоугольника равна Вписать прямоугольник в окружность, а периметр равен Вписать прямоугольник в окружность. Найти стороны прямоугольника.

Решение. Для нахождения сторон прямоугольника воспользуемся формулами (11), (12) и (8). Найдем сначала дискриминант ( small D ) из формулы (11). Для этого подставим Вписать прямоугольник в окружность, Вписать прямоугольник в окружностьв (11):

Вписать прямоугольник в окружность

Подставляя значения Вписать прямоугольник в окружностьи Вписать прямоугольник в окружностьв первую формулу (12), получим:

Вписать прямоугольник в окружность

Найдем другую сторону ( small b ) из формулы (8). Подставляя значения Вписать прямоугольник в окружностьи Вписать прямоугольник в окружностьв формулу, получим:

Вписать прямоугольник в окружность

Ответ: Вписать прямоугольник в окружность, Вписать прямоугольник в окружность

Видео:№701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждыйСкачать

№701. Начертите три треугольника: остроугольный, прямоугольный и тупоугольный. В каждый

Признаки прямоугольника

Признак 1. Если в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником.

Признак 2. Если квадрат диагонали параллелограмма равен сумме квадратов его смежных сторон, то этот параллелограмм является прямоугольником.

Признак 3. Если углы параллелограмма равны, то этот параллелограмм является прямоугольником.

📺 Видео

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

Правильные многоугольники. Геометрия 9 класс  | Математика | TutorOnline

Строим вписанную в данный треугольник окружность (Задача 2).Скачать

Строим вписанную в данный треугольник окружность (Задача 2).

Вписанный в окружность прямоугольный треугольник.Скачать

Вписанный в окружность прямоугольный треугольник.

№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. ДляСкачать

№711. Начертите три треугольника: тупоугольный, прямоугольный и равносторонний. Для

Высота, биссектриса, медиана. 7 класс.Скачать

Высота, биссектриса, медиана. 7 класс.

Прямоугольник и окружностьСкачать

Прямоугольник и окружность

Задача.Окружность и прямоугольник вписаны в квадрат.Скачать

Задача.Окружность и прямоугольник вписаны в квадрат.

Деление окружности на 3; 6; 12 равных частейСкачать

Деление окружности на 3; 6; 12 равных частей

№709. Докажите, что если около параллелограмма можно описать окружность, то этот параллелограммСкачать

№709. Докажите, что если около параллелограмма можно описать окружность, то этот параллелограмм
Поделиться или сохранить к себе: