Авсda1b1c1d1 куб найдите вектор равный ca1

Дан параллелепипед abcda1b1c1d1 найдите вектор ca1 + ad + d1c1 найдите вектор ab — aa1 — c1b1 найдите вектор bc1 в виде разности двух векторов, один из которых вектор d1b?

Геометрия | 5 — 9 классы

Дан параллелепипед abcda1b1c1d1 найдите вектор ca1 + ad + d1c1 найдите вектор ab — aa1 — c1b1 найдите вектор bc1 в виде разности двух векторов, один из которых вектор d1b.

Авсda1b1c1d1 куб найдите вектор равный ca1

Ответ : а) сс1 ; б) а1с ; в) bc1 = d1c1 — d1b.

Объяснение : Правила : СУММА.

Начало второго вектора совмещается с концом первого, начало третьего — с концом второго и так далее, сумма же n векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом n — го (то есть изображается направленным отрезком, замыкающим ломаную).

Для получения вектора разности (c) = (a — b) начала векторов соединяются и началом вектора разности (c) будет конец вектора (b) (вычитаемое), а концом — конец вектора (a) (уменьшаемое).

Тогда : Вектор ca1 + ad + d1c1 = ca1 + a1d1 + d1c1 = сс1 (вектор ad = вектору а1d1)Вектор ab — aa1 — c1b1 = a1b — c1b1 = d1c — d1a1 = a1c (вектор a1b = вектору d1c).

Вектор bc1 = d1с1 — d1b.

Авсda1b1c1d1 куб найдите вектор равный ca1

Содержание
  1. Вектор m противоположно направлен вектору b и имеет длину вектора a ?
  2. Даны векторы x и y Найдите координаты векторов?
  3. Найдите координаты вектора a + b если 1)вектор a , вектор b 2)вектор a, вектор b ?
  4. Найдите скалярное произведение векторов а и b, если векторы a и b противоположно направлены и |вектора a| = 3, |вектор b| = 1?
  5. Даны векторы а(0, 4) и b( — 3, — 2)?
  6. Даны векторы а(3 ; 4) и b(6 ; 8)Найдите угол между этими векторами?
  7. Даны некомпланарные векторы a, b, c?
  8. Даны векторы ?
  9. PABCD — пирамида, ABCD — параллелограмм, вектор PA = вектору a, вектор PB = вектору b, вектор PC = вектору с?
  10. Дан вектор А(1 ; 4 3) Найдите абсолютную величину вектора 3а?
  11. Геометрия
  12. Понятие вектора в пространстве
  13. Операции над векторами
  14. Компланарные векторы
  15. Разложение вектора на некомпланарные вектора
  16. 441. Дан куб ABCDA1B1C1D1. Найдите угол между векторами: а) В1В и В1С; б) DA и B1D1; в) А1С1 и А1В; г) ВС и АС; д) ВВ1 и АС; е) В1С и AD1; ж) A1D1 и ВС; з) АА1 и С1С.
  17. 441. Дан куб ABCDA1B1C1D1. Найдите угол между векторами: а) В1В и В1С; б) DA и B1D1; в) А1С1 и А1В; г) ВС и АС; д) ВВ1 и АС; е) В1С и AD1; ж) A1D1 и ВС; з) АА1 и С1С.
  18. 📸 Видео

Видео:№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинамиСкачать

№358. Дан параллелепипед ABCDA1B1C1D1. Назовите вектор, начало и конец которого являются вершинами

Вектор m противоположно направлен вектору b и имеет длину вектора a ?

Вектор m противоположно направлен вектору b и имеет длину вектора a .

Найдите координаты вектора m.

Авсda1b1c1d1 куб найдите вектор равный ca1

Видео:№364. Точка К—середина ребра В1С1 куба ABCDA1B1C1D1. Разложите вектор АК по векторам а = АВ,Скачать

№364. Точка К—середина ребра В1С1 куба ABCDA1B1C1D1. Разложите вектор АК по векторам а = АВ,

Даны векторы x и y Найдите координаты векторов?

Даны векторы x и y Найдите координаты векторов.

Авсda1b1c1d1 куб найдите вектор равный ca1

Видео:№330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1Скачать

№330. Нарисуйте параллелепипед ABCDA1B1C1D1 и обозначьте векторы C1D1, BA1

Найдите координаты вектора a + b если 1)вектор a , вектор b 2)вектор a, вектор b ?

Найдите координаты вектора a + b если 1)вектор a , вектор b

Авсda1b1c1d1 куб найдите вектор равный ca1

Видео:№402. Даны координаты четырех вершин куба ABCDA1B1C1D1: А (0; 0; 0), В (0; 0; 1), D (0; 1; 0)Скачать

№402. Даны координаты четырех вершин куба ABCDA1B1C1D1: А (0; 0; 0), В (0; 0; 1), D (0; 1; 0)

Найдите скалярное произведение векторов а и b, если векторы a и b противоположно направлены и |вектора a| = 3, |вектор b| = 1?

Найдите скалярное произведение векторов а и b, если векторы a и b противоположно направлены и |вектора a| = 3, |вектор b| = 1.

Авсda1b1c1d1 куб найдите вектор равный ca1

Видео:№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.Скачать

№359. Дан параллелепипед ABCDA1B1C1D1. а) Разложите вектор BD1 по векторам ВА, ВС и ВВ1.

Даны векторы а(0, 4) и b( — 3, — 2)?

Даны векторы а(0, 4) и b( — 3, — 2).

Найдите векторы с = 2а — b.

Авсda1b1c1d1 куб найдите вектор равный ca1

Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

Даны векторы а(3 ; 4) и b(6 ; 8)Найдите угол между этими векторами?

Даны векторы а(3 ; 4) и b(6 ; 8)

Найдите угол между этими векторами.

Авсda1b1c1d1 куб найдите вектор равный ca1

Видео:№191. Дан куб ABCDA1B1C1D1. Докажите, что плоскостиСкачать

№191. Дан куб ABCDA1B1C1D1. Докажите, что плоскости

Даны некомпланарные векторы a, b, c?

Даны некомпланарные векторы a, b, c.

Известно, что d = a — 2b + 3c.

Найдите разложение по векторам a, b, c вектора d1, если векторы d и d1 сонаправлены, а длина вектора d1 в три раза больше длины вектора d.

Авсda1b1c1d1 куб найдите вектор равный ca1

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Даны векторы ?

Найдите координаты вектора p = — 1 2a + 2b — c.

Авсda1b1c1d1 куб найдите вектор равный ca1

Видео:№190. Дан куб ABCDA1B1C1D1. Найдите следующие двугранные углы: а) АВВ1ССкачать

№190. Дан куб ABCDA1B1C1D1. Найдите следующие двугранные углы: а) АВВ1С

PABCD — пирамида, ABCD — параллелограмм, вектор PA = вектору a, вектор PB = вектору b, вектор PC = вектору с?

PABCD — пирамида, ABCD — параллелограмм, вектор PA = вектору a, вектор PB = вектору b, вектор PC = вектору с.

Выразите вектор PD = вектору х через векторы а, в, с.

Авсda1b1c1d1 куб найдите вектор равный ca1

Видео:В кубе ABCDA1B1C1D1 найдите угол между прямыми AD1 и В1D1. Ответ дайте в градусах.Скачать

В кубе ABCDA1B1C1D1 найдите угол между прямыми AD1 и В1D1. Ответ дайте в градусах.

Дан вектор А(1 ; 4 3) Найдите абсолютную величину вектора 3а?

Дан вектор А(1 ; 4 3) Найдите абсолютную величину вектора 3а.

Вы зашли на страницу вопроса Дан параллелепипед abcda1b1c1d1 найдите вектор ca1 + ad + d1c1 найдите вектор ab — aa1 — c1b1 найдите вектор bc1 в виде разности двух векторов, один из которых вектор d1b?, который относится к категории Геометрия. По уровню сложности вопрос соответствует учебной программе для учащихся 5 — 9 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

Авсda1b1c1d1 куб найдите вектор равный ca1

Т. К треугольник равносторонний, то высота является еще и медианой. Зн одна из сторон делится пополам. Затем находим па Пифагору. 16 корней из 3 в кварате минус 8 корней из 3 в квадрате. 768 — 192 = 576. Зн. высота = 24 см.

Авсda1b1c1d1 куб найдите вектор равный ca1

5 — 9 классы Геометрия 5 + 3 б ПОМОГИТЕ ПОЖАЛУЙСТА ОЧЕНЬ СРОЧНО Дано : А(7 ; — 4), В( — 2 ; — 10), С(0 ; 5).  Найти : а) координаты вектора ВС ; б) длину вектора АВ ;  в) координаты середины отрезка АС ; г) периметр треугольника АВС ; д) длину мед..

Авсda1b1c1d1 куб найдите вектор равный ca1

Т. К. Плоскость b1c1d1 совпадает с плоскостью куба, а плоскость, образованная прямыми a1d1 и CB, параллельна диагоналям на боковых сторонах куба, то угол между этими плоскостями будет равен углу между стороной и диагональю любой из плоскостей куба. ..

Авсda1b1c1d1 куб найдите вектор равный ca1

Прямая СД1 — диагональ грани, перпендикулярной заданной грани ВВ1С1. Их линия пересечения — ребро СС1. Угол между СД1и СС1 равен 45 градусов. Это ибудет искомый угол между СД1 и ВВ1С1.

Авсda1b1c1d1 куб найдите вектор равный ca1

ΔABO — равнобедренный ∠AOB = 180 — 2 * 30 = 180 — 60 = 120.

Авсda1b1c1d1 куб найдите вектор равный ca1

— 2 * — 2 * соs4 2m = — 5 ; 0 3n = 0 ; 3 P = 2 ; 3 A = 2m — 3n + p 1)4 * 5 * cos30град.

Авсda1b1c1d1 куб найдите вектор равный ca1

Ответ на картинке. 29° и 151° — смежные (значит сумма 180°) 29° и 29° вертикальные (значит, равны) 151° и 151° вертикальные (значит, равны).

Авсda1b1c1d1 куб найдите вектор равный ca1

Не знаю в гуле забей.

Авсda1b1c1d1 куб найдите вектор равный ca1

Авсda1b1c1d1 куб найдите вектор равный ca1

Так как по условию AD — медиана, то — по самому определению медианы — BD = DC, то есть векторы BD и DC имеют равные длины. А так как при этом они лежат на одной прямой BC, то из определения равенства векторов следует их равенство.

Видео:№344. Диагонали куба ABCDA1B1C1D1 пересекаются в точке О. Найдите число k такое,Скачать

№344. Диагонали куба ABCDA1B1C1D1 пересекаются в точке О. Найдите число k такое,

Геометрия

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Видео:№196. Изобразите куб ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через:Скачать

№196. Изобразите куб ABCDA1B1C1D1 и постройте его сечение плоскостью, проходящей через:

Понятие вектора в пространстве

Напомним, что в курсе планиметрии мы уже подробно изучали вектора и действия с ними. При этом предполагалось, что все вектора располагаются в одной плоскости. Однако можно расширить понятие вектора так, чтобы они использовались и в стереометрии. В таком случае вектора уже могут располагаться в различных плоскостях.

Начнем с определения вектора:

Конец вектора обозначают с помощью стрелки. Посмотрим на рисунок:

Здесь показаны сразу три вектора:

У вектора АВ начало находится в точке А, а конец – в точке В. Аналогично у вектора С D точка С – это начало, а D – это конец. В обоих случаях начало и конец – это различные точки, поэтому АВ и CD именуют ненулевыми векторами. Если же начало и конец находятся в одной точке, например в Т, то получается нулевой вектор ТТ. Всякую точку в пространстве можно рассматривать как нулевой вектор:

Длина вектора АВ – это длина соответствующего ему отрезка АВ. Для обозначения длины используют квадратные скобки:

Естественно, что нулевой вектор имеет нулевую длину.

Далее напомним понятие коллинеарных векторов:

Коллинеарные вектора могут быть либо сонаправленными, либо противоположно направленными. Сонаправленные вектора находятся на сонаправленных лучах. Рассмотрим пример с кубом:

Здесь показаны вектора AD и ВС. Они сонаправленные, этот факт записывается так:

Вектора AD и FE располагаются на скрещивающихся прямых, поэтому они не коллинеарны. Их нельзя считать ни сонаправленными, ни противоположно направленными.

Сонаправленные вектора, имеющие одинаковую длину, именуются равными.

Рассмотрим несколько простейших задач.

Задание. В прямоугольном параллелепипеде АВС DA 1 B 1 C 1 D 1 известны три его измерения:

Решение. Для нахождения длин этих векторов достаточно вычислить длину отрезков СВ, DB и DB 1. Проще всего вычислить СВ, ведь отрезки СВ и AD одинаковы как стороны прямоугольника АВ CD :

Задание. На рисунке показан правильный тетраэдр АВС D . Точки M , N , P и Q являются серединами тех сторон, на которых они располагаются. Какие вектора из отмеченных на рисунке равны между собой?

Решение. Легко заметить, что вектора DP и PC находятся на одной прямой DC и сонаправлены, при этом их длина одинакова, ведь Р – середина DC . Тогда эти вектора по определению равны:

Вектора АМ и МВ также коллинеарны и имеют одинаковую длину, но они противоположно направлены, а потому равными не являются.

Теперь заметим, что отрезки MN , MQ , PQ и NP – это средние линии в ∆ ABD , ∆ АВС, ∆ BCD и ∆ ACD соответственно. По свойству средней линии получаем, что MN || BD , PQ || BD , MQ ||АС и NP ||АС. Отсюда по свойству транзитивности параллельности получаем, что MN || PQ и MQ || NP . Это значит, что четырехугольник MQPN – это параллелограмм, а у него противоположные стороны одинаковы:

Видео:Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

Операции над векторами

Правила сложения векторов в стереометрии не отличаются от правил в планиметрии. Пусть надо сложить два вектора, а и b . Для этого отложим вектор а от какой-нибудь точки А, тогда его конец окажется в некоторой точке В. Далее от В отложим вектор b , его конец попадет в какую-то точку С. Тогда вектор АС как раз и будет суммой a и b :

Такой метод сложения векторов именуется правилом треугольника. Если нужно сложить больше двух векторов, то используют правило многоугольника. В этом случае необходимо каждый следующий вектор откладывать от конца предыдущего. При этом в стереометрии вектора могут располагаться в различных плоскостях, то есть они на самом деле многоугольник не образуют:

Напомним, что в планиметрии существовали так называемые противоположные вектора. Есть они и в стереометрии:

Главное свойство противоположных векторов заключается в том, что в сумме они дают нулевой вектор:

Заметим, что для получения противоположного вектора достаточно поменять его начало и конец, то есть в записи вектора обозначающие его буквы надо просто записать в обратном порядке:

C помощью противоположного вектора легко определить операцию вычитания векторов. Чтобы из вектора а вычесть вектор b , надо всего лишь прибавить к a вектор, противоположный b :

Далее рассмотрим умножение вектора на число. Пусть вектор а умножается на число k . В результате получается новый вектор b , причем

1) b и a будут коллинеарными векторами;

2) b будет в k раз длиннее, чем вектор a .

Если k – положительное число, то вектора a и b будут сонаправленными. Если же k a и b будут направлены противоположно.

Уточним, что если | k | b будет не длиннее, а короче вектора a . Наконец, если k = 0, то и b будет иметь нулевую длину, то есть b окажется нулевым вектором.

Задание. Дан параллелепипед АВС D А1В1С1 D 1. Постройте вектор, который будет являться суммой векторов:

Решение. В каждом случае необходимо заменить один из векторов в сумме на другой равный ему вектор так, чтобы можно было применить правило треугольника.

В задании а) вектор А1 D 1 заменить равным ему вектором ВС. В итоге получится вектор АС.

В задании б) заменяем А D 1 на вектор ВС1. Также можно было бы заменить АВ на D 1 C 1. В обоих случаях сумма окажется равной АС1.

В задании в) удобно DA заменить на C 1В1, тогда искомой суммой будет вектор С1В.

В задании г) производим замену DD 1 на равный ему вектор BB 1. Тогда сумма DB и BB 1– это вектор DB 1.

В задании д) необходимо заменить ВС на В1С1. В итоге получаем вектор DC :

Задание. В пространстве отмечены точки А, В, С и D . Выразите вектор АВ через вектора:

Решение. В случае а) сначала запишем очевидное равенство векторов, вытекающее из правило многоугольника:

Обратите внимание, что здесь у каждого следующего слагаемого начальная точка совпадает с конечной точкой предыдущего слагаемого, поэтому равенство и справедливо:

Однако по условию а) нам надо использовать другие вектора для выражения АВ. Мы можем просто заменить вектора CD и DB на противоположные:

Теперь можно составить и выражение для АВ:

Аналогично решаем и задания б) и в):

Задание. Р – вершина правильной шестиугольной пирамиды. Докажите, что сумма векторов, совпадающих с ребрами этой пирамиды и начинающихся в точке Р, в точности равна сумме векторов, которые совпадают с апофемами пирамиды и при этом также начинаются в точке Р.

Решение. Обозначим вершины буквами А1, А2, … А6, а середины сторон шестиугольника, лежащего в основании, буквами Н1, Н2, … Н6, как это показано на рисунке:

Нам надо показать, что сумма красных векторов равна сумме черных векторов:

Теперь отдельно построим правильный шестиугольник, лежащий, в основании пирамиды:

Ясно, что вектора, образованные сторонами этого шестиугольника, в сумме дают нулевой вектор (по правилу многоугольника):

Так как точки Н1, Н2, … Н6 – середины сторона, то вектора Н6А6, Н5А5,…Н1А1 будут вдвое короче векторов А1А6, А6А5, … А2А1. При этом они находятся на одних прямых, поэтому справедливы равенства:

Таким образом нам удалось из верного равенства (3) доказать (2), из которого в свою очередь следует справедливость и (1), ч. т. д.

Задание. Упростите выражения:

Решение. Здесь надо просто применить законы сложения и умножения векторов, как это делалось и в курсе планиметрии. Сначала раскрываем скобки, а потом приводим подобные слагаемые:

Видео:Как находить угол между векторамиСкачать

Как находить угол между векторами

Компланарные векторы

Если мы отложим несколько векторов от одной точки, то они либо будут находиться в одной плос-ти, либо располагаться в различных плос-тях. В первом случае их именуют компланарными векторами, а во втором – некомпланарными.

Любые два вектора будут компланарны, ведь при их откладывании от одной точки мы получаем две пересекающихся прямых, а через них всегда можно провести плос-ть. Однако если векторов более двух, то они могут быть как компланарны, так и некомпланарны.

Рассмотрим для примера параллелепипед:

Здесь вектора АС, АВ и АD компланарны, так как все они принадлежат одной грани (то есть плос-ти) АВСD. А вектора АВ, АD и АА1 некомпланарны, ведь через них нельзя провести одну плос-ть.

Очевидно, что если из трех векторов любые два коллинеарны, то вся тройка векторов компланарна, ведь при откладывании векторов от одной точки коллинеарные вектора окажутся на одной прямой.

Существует признак компланарности векторов:

Напомним, что подразумевается под разложением вектора. Пусть есть вектора а, b и c. Если существуют такие числах и y, при которых выполняется равенство

то говорят, что вектор с разложен по векторам а и b, причем числа xи y называются коэффициентами разложения.

Докажем сформулированный признак. Пусть есть три вектора а, b и c, а также числа xи y, такие, что

Эти вектора находятся в одной плос-ти ОАВ. Теперь от той же точки О отложим вектора ха и уb, концы которых окажутся в точках А1 и В1:

Естественно, что вектора ОА1 и ОВ1 также окажутся в плос-ти ОАВ. Тогда и их сумма будет принадлежать этой плос-ти, а эта сумма как раз и есть вектор с:

В итоге получили, что а, b и с располагаются в одной плос-ти, то есть они компланарны.

Справедливо и обратное утверждение. Если вектора а, b и с компланарны, но а и b неколлинеарны, то вектор с можно разложить на вектора a и b. Это утверждение прямо следует из изученной в 9 классе теоремы о разложении векторов. Важно отметить, что коэффициенты такого разложения определяются однозначно.

Для сложения тройки некомпланарных векторов можно применить так называемое правило параллелепипеда. Если есть три некомпланарных вектора, то можно отложить их от одной точки О и далее построить параллелепипед, в котором эти вектора будут ребрами. Тогда диагональ этого параллелепипеда, выходящая из точки О, и будет суммой этих трех векторов:

Видео:8 задание ЕГЭ по математике профильному.Объем параллелепипеда ABCDA1B1C1D1 равен 4,5. Найдите объемСкачать

8 задание ЕГЭ по математике профильному.Объем параллелепипеда  ABCDA1B1C1D1 равен 4,5. Найдите объем

Разложение вектора на некомпланарные вектора

Иногда вектор можно разложить не на два, а на три вектора. Выглядит такое разложение так:

Для доказательства рассмотрим три некомпланарных вектора а, bи c, а также произвольный вектор р. Отложим их от одной точки О. Обозначим концы этих векторов большими буквами А, В, С и Р:

Через ОВ и ОА можно провести некоторую плос-ть α. Точка С ей принадлежать не может, ведь ОА, ОВ и ОС – некомпланарные вектора. Проведем через Р прямую, параллельную ОС. Так как ОС пересекает α, то и параллельная ей прямая также пересечет α в некоторой точке Р1. (Примечание. Если Р принадлежит α, то точки Р и Р1 совпадут, то есть вектор Р1Р будет нулевым).

Далее через точку Р1 в плос-ти α проведем прямую, параллельную ОВ, которая пересечет ОА в точке Р2. Заметим, что вектор ОР2 находится на той же прямой, что и вектор ОА, то есть они коллинеарны, поэтому существует такое число х, что

Итак, мы показали, что у произвольного вектора p есть разложение на заранее заданные некомпланарные вектора. Осталось показать, что существует только одно такое разложение. Докажем это методом от противного. Пусть есть второе разложение с другими коэффициентами х1, у1 и z1:

В правой части находятся три вектора, которые в сумме нулевой вектор. По правилу сложения векторов это означает, что эти вектора образуют треугольник, то есть находятся в одной плос-ти:

Значит, они компланарны. Тогда компланарны и вектора a, b и с, что противоречит условию теоремы. Значит, второго разложения р на заданные некомпланарные векторы не существует, ч. т. д.

Задание. АВСD и А1В1С1D1 – параллелограммы, располагающиеся в разных плос-тях. Докажите, что тройка векторов ВВ1, СС1 и DD1 компланарна.

Решение. Сначала построим рисунок по условию задачи:

Для доказательства используем признак компланарности векторов. Для этого надо один из векторов, отмеченных на рисунке красным, разложить на два других вектора.

В результате нам удалось разложить СС1 на вектора BB1 и CC1. Значит, эти три вектора коллинеарны.

Задание. В параллелепипеде АВСDA1B1C1D1 запишите разложение вектора BD1 по векторам ВА, ВС и ВВ1.

Решение. Сначала представим вектор BD1 как сумму трех векторов:

Теперь заметим, что вектора С1D1 и ВА соответствуют ребрам параллелепипеда. Эти ребра одинаковы по длине и параллельны, поэтому и вектора будут равными. Аналогично равны вектора СС1 и ВВ1:

Задание. АВСD – тетраэдр, а точка К делит его ребро ВС пополам. Разложите вектор DK по векторам DA, AB и AC.

Решение. Сначала запишем очевидное выражение для вектора DK:

Задание. В точке М пересекаются медианы треугольника АВС, а О – произвольная точка в пространстве. Разложите вектор ОМ по векторам ОА, ОВ и ОС.

Решение. Медиану, проходящую через точку А, мы обозначим как АА1, то есть А1 – это середина отрезка ВС. Также буквой К обозначим середину ОВ:

Сначала разложим вектор ОА1 на ОВ и ОС. Это можно сделать, ведь они компланарны. КА1 – это средняя линия ∆ОСВ, поэтому КА1||ОС и КА1 вдвое короче ОС. Это значит, что

Так как АА1 – медиана, то точка М делит ее в отношении 2:1. Отсюда вытекает следующее соотношение:

Только что решенная задача может быть использована и при решении другого, более сложного задания.

Задание. Докажите, что в параллелепипеде АВС1В1С1D1 плос-ти А1ВD и СB1D1 делят диагональ АС1 на три равных отрезка.

Решение. Обозначим точкой K точку пересечения медиан ∆А1ВD. Тогда по формуле, выведенной в предыдущей задаче, мы получаем, что

Это соотношение означает, что вектора АК и АС1 коллинеарны, поэтому они располагаются на одной прямой (они не могут находиться на параллельных прямых, ведь у них есть общая точка А). Значит, точка K принадлежит диагонали АС1, и отрезок АК втрое короче диагонали.

Аналогично можно показать, что и

Из этого также вытекает, что М принадлежит диагонали АС1, и МС1 втрое короче АС1. Значит, точки М и К делят диагональ на три равных отрезка, ч. т. д.

Сегодня мы расширили понятие векторов и научились их применять не только в планиметрических, но и в стереометрических задачах. При сохраняются все правила, по которым выполняются действия над векторами. Также в стереометрии появляется новое понятие компланарных и некомпланарых векторов.

Видео:№357. Даны параллелограммы ABCD и AB1C1D1. Докажите, что векторы ВВ1, СС1 и DD1 компланарны.Скачать

№357. Даны параллелограммы ABCD и AB1C1D1. Докажите, что векторы ВВ1, СС1 и DD1 компланарны.

441. Дан куб ABCDA1B1C1D1. Найдите угол между векторами: а) В1В и В1С; б) DA и B1D1; в) А1С1 и А1В; г) ВС и АС; д) ВВ1 и АС; е) В1С и AD1; ж) A1D1 и ВС; з) АА1 и С1С.

Видео:Задание №443 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)Скачать

Задание №443 — ГДЗ по геометрии 11 класс (Атанасян Л.С.)

441. Дан куб ABCDA1B1C1D1. Найдите угол между векторами: а) В1В и В1С; б) DA и B1D1; в) А1С1 и А1В; г) ВС и АС; д) ВВ1 и АС; е) В1С и AD1; ж) A1D1 и ВС; з) АА1 и С1С.

Авсda1b1c1d1 куб найдите вектор равный ca1

а) Векторы ВВ1 и В1С совпадают с катетом и гипотенузой прямоугольного треугольника BВ1С, следовательно, ВВ1С=45°.

б) BD = B1D1 , т.к. они сонаправлены и имеют одинаковую длину. BD = B1D1 =- DB .

Угол между DB и DA — угол между стороной и диагональю квадрата, т.е. α=45°. Тогда угол между

Авсda1b1c1d1 куб найдите вектор равный ca1

в) A1C1 и A1B совпадают со сторонами равностороннего треугольника АВС и отложены из одной точки. Следовательно, угол 60°.

Авсda1b1c1d1 куб найдите вектор равный ca1

(угол между стороной и диагональю

Авсda1b1c1d1 куб найдите вектор равный ca1

Авсda1b1c1d1 куб найдите вектор равный ca1

Пусть О — точка пересечения диагоналей В1С и ВС1,

Авсda1b1c1d1 куб найдите вектор равный ca1

Авсda1b1c1d1 куб найдите вектор равный ca1

Авсda1b1c1d1 куб найдите вектор равный ca1

Авсda1b1c1d1 куб найдите вектор равный ca1

Авсda1b1c1d1 куб найдите вектор равный ca1

следовательно, угол между ними равен 180°

Авсda1b1c1d1 куб найдите вектор равный ca1 Решебник по геометрии за 10 класс (Л.С.Атанасян, 2001 год),
задача №441
к главе «Глава V. Метод координат в пространстве. § 2. Скалярное произведение векторов».

📸 Видео

Задание 3 (№27717) ЕГЭ по математике. Урок 80Скачать

Задание 3 (№27717) ЕГЭ по математике. Урок 80

Геометрия Диагонали грани ABCD куба ABCDA1B1C1D1 пересекаются в точке O Найдите угол между прямымиСкачать

Геометрия Диагонали грани ABCD куба ABCDA1B1C1D1 пересекаются в точке O Найдите угол между прямыми

Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

Аналитическая геометрия, 1 урок, Векторы в пространстве
Поделиться или сохранить к себе: