Задачи на вектор скорости

Скорость, Вектор скорости и траектория, Сложение скоростей

Скорость

Средняя скорость частицы характеризует быстроту ее движения за конечный промежуток времени. Неограниченно уменьшая этот промежуток, мы придем к физической величине, характеризующей быстроту движения в данный момент времени. Такая величина называется мгновенной скоростью или просто скоростью:

Задачи на вектор скорости

обозначает математическую операцию перехода к пределу. Под этим символом записывается условие, при котором выполняется данный предельный переход; в рассматриваемом случае это стремление к нулю промежутка времени. При вычислении скорости по этому правилу мы убедимся, что уменьшение промежутка времени приводит к тому, что на некотором этапе получаемые очередные значения средней скорости будут все меньше и меньше отличаться друг от друга. Поэтому на практике при нахождении скорости можно остановиться на конечном значении, достаточно малом для получения требуемой точности значения скорости.

Задачи на вектор скорости

Вектор скорости и траектория.

Рассматриваемый предельный переход имеет ясный геометрический смысл. Поскольку вектор перемещения направлен по хорде, соединяющей две точки траектории, то при сближении этих точек, происходящем при, он принимает положение, соответствующее касательной к траектории в данной точке. Это значит, что вектор скорости направлен по касательной к траектории. Так будет в любой точке траектории (рис. 14). При прямолинейной траектории движения вектор скорости направлен вдоль этой прямой.

Скорость прохождения пути.

Аналогичным переходом определяется мгновенная скорость прохождения пути:

Задачи на вектор скорости

Для плавной кривой, каковой является траектория любого непрерывного механического движения, длина дуги тем меньше отличается от длины стягивающей ее хорды, чем короче эта дуга. В пределе эти длины совпадают. Поэтому при можно считать, что . Это означает, что скорость прохождения пути равна модулю мгновенной скорости . Движение, при котором модуль скорости остается неизменным, называется равномерным. В случае прямолинейной траектории при равномерном движении вектор скорости постоянен, а в случае криволинейной траектории изменяется только его направление.

Сложение скоростей.

Если тело одновременно участвует в нескольких движениях, то его скорость равна векторной сумме скоростей каждого из этих движений. Это непосредственно следует из правила сложения перемещений: так как , то после деления на получаем

Задачи на вектор скорости

Иногда бывает удобно представить некоторое сложное движение как суперпозицию, т. е. наложение двух простых движений. В этом случае равенство (3) можно трактовать как правило разложения вектора скорости на составляющие.

По этой ссылке вы найдёте полный курс лекций по математике:

Задачи.

1.

Переправа через реку. Скорость течения в реке с параллельными берегами всюду одинакова и равна. Ширина реки (рис. 15). Катер может плыть со скоростью относительно воды. На какое расстояние s снесет катер вниз по течению реки, если при переправе нос катера направить строго поперек берегов?

Задачи на вектор скорости

Катер участвует одновременно в двух движениях: со скоростью , направленной поперек течения, и вместе с водой со скоростью которая направлена параллельно берегу. В соответствии с правилом сложения скоростей полная скорость катера относительно берегов равна векторной сумме (рис. 16). Очевидно, что движение катера происходит по прямой, направленной вдоль вектора. Искомое расстояние s, на которое снесет катер при переправе, можно найти из подобия треугольника, образованному векторами скоростей:

Задачи на вектор скорости

Эту задачу легко решить и не прибегая к сложению векторов скоростей.

Очевидно, что расстояние s равно произведению скорости течения на время в течение которого катер пересекает реку. Это время можно найти, разделив ширину реки на скорость движения катера поперек реки. Таким образом, находим Рис. 16. Сложение скоростей при переправе через .В этой простой задаче второй способ решения предпочтительнее, так как он проще. Однако уже при небольшом усложнении условия задачи становятся отчетливо видны преимущества первого способа, основанного на сложении векторов скоростей.

2. Переправа поперек реки. Предположим, что теперь нам нужно переправиться на катере через ту же реку точно поперек, т. е. попасть в точку В, лежащую напротив начальной точки А (рис. 17). Как нужно направить нос катера при переправе? Сколько времени займет такая переправа?Решение. В рассматриваемом случае полная скорость v катера относительно берегов, равная векторной сумме скоростей должна быть направлена поперек реки.

Задачи на вектор скорости

Из рис. 17 сразу видно, что вектор, вдоль которого и смотрит нос катера, должен отклоняться на некоторый угол а вверх по течению реки от направления . Синус этого угла равен отношению модулей скоростей течения и катера относительно воды. Переправа поперек реки без сноса возможна только в том случае, когда скорость катера относительно воды больше скорости течения. Это сразу видно либо из треугольника скоростей на рис. 17 (гипотенуза всегда больше катета), либо из формулы (синус угла а должен быть меньше единицы).Время переправы найдем, разделив ширину реки на полную скорость катера по теореме Пифагора.

Возможно вам будут полезны данные страницы:

3. Снос при быстром течении.

Предположим теперь, что скорость катера относительно воды меньше скорости течения: В таком случае переправа без сноса невозможна. Как следует направить нос катера при переправе, чтобы снос получился минимальным? На какое расстояние этом снесет катер? Решение. Полная скорость относительно берегов во всех рассматриваемых случаях дается формулой. Однако теперь нагляднее выполнить сложение векторов и по правилу треугольника (рис. 18) первым изображаем век гор для которого мы знаем модуль направление, а затем к его концу пристраиваем начало вектора известен только модуль, направление еще предстоит выбрать. Этот выбор нужно сделать так, вектор результирующей скорости как можно меньше отклонялся от направления поперек реки.

Задачи на вектор скорости

Рис. 19. Определение курса (направление вектора) переправы минимальным сносом 18. Сложение скоростей переправе Конец любом направлении должен лежать на окружности радиуса центр которой совпадает концом вектора. Эта окружность показана Так условию задачи то точка соответствующая началу лежит вне этой окружности.

Из рисунка видно, что образует прямой

наименьший угол тогда, когда он направлен касательной Следовательно, перпендикулярен вектору треугольник прямоугольный. Таким образом, направлять вверх течению под углом линии Синус этого угла дастся выражением Траектория направлена вдоль вектора, т.е. она перпендикулярна направлению, в котором смотрит катера. Это значит, своей траектории катер движется боком. другом берегу реки причалит точке, до найти из подобия треугольников. Модуль находится теореме Пифагора. результате получаем

4. Лодка тросе. Лодку подтягивают за привязанный носу трос, наматывая равномерно вращающийся барабан Барабан установлен высоком берегу. какой скоростью лодка тот момент, трос горизонтом? Трос выбирается барабаном скоростью.

Задачи на вектор скорости

Решение.

Точка троса, где он привязан к лодке, движется с той же скоростью, что и лодка. Эта скорость v направлена горизонтально. Чтобы связать ее со скоростью выбирания троса, нужно сообразить, что движение троса сводится к повороту вокруг точки В, где он касается барабана, и скольжению вдоль собственного направления, т. е. прямой . Поэтому естественно разложить скорость точки на две составляющие , направленные вдоль и поперек троса (рис. 21). Скорость , направленная поперек, связана с поворотом троса. Модуль скорости направленной вдоль троса, — это и есть данное в условии задачи значение скорости.

Задачи на вектор скорости

По мере приближения лодки к берегу угол а становится больше. Это значит, что cos а убывает и искомая скорость возрастает. Задача для самостоятельного решения Человек находится в поле на расстоянии от прямолинейного участка шоссе. Слева от себя он замечает движущийся по шоссе автомобиль. В каком направлении следует бежать к шоссе, чтобы выбежать на дорогу впереди автомобиля и как можно дальше от него? Скорость автомобиля и, скорость человека.

Задачи на вектор скорости

• Объясните, почему вектор скорости всегда направлен по касательной к траектории.

• В некоторых случаях траектория движения частицы может иметь изломы. Приведите примеры таких движений. Что можно сказать о направлении скорости в точках, где траектория имеет излом?

• В случае непрерывного механического движения вектор скорости не испытывает скачков ни по модулю, ни по направлению. Появление скачков скорости всегда связано с некоторой идеализацией реального процесса. Какие идеализации присутствовали в приведенных вами примерах траекторий с изломами?

• Найдите ошибку в приводимом ниже решении задачи 4. Разложим скорость , точки троса на вертикальную и горизонтальную составляющие (рис. 22). Горизонтальная составляющая это и есть искомая скорость лодки. Поэтому и (неверно!).

Скорость как производная.

Вернемся к выражению (1) для мгновенной скорости. При движении частицы ее радиус-вектор г изменяется, т. е. является некоторой функцией времени:. Перемещение Дг за промежуток времени At представляет собой разность радиусов-векторов в моменты времени. Поэтому формулу (1) можно переписать в виде В математике такую величину называют производной от функции по времени Для нее используют следующие обозначения. Последнее обозначение (точка над буквой) характерно именно для производной по времени. Отметим, что в данном случае производная представляет собой вектор, так как получается в результате дифференцирования векторной функции по скалярному аргументу. Для модуля мгновенной скорости в соответствии справедливо выражение в начале статьи.

Присылайте задания в любое время дня и ночи в ➔ Задачи на вектор скоростиЗадачи на вектор скорости

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Решение задач на тему: «Относительность движения и сложение скоростей».

Задачи на вектор скорости

Примеры и подробное решение задач на тему: «Относительность движения и сложение скоростей».

Перечень разобранных задач:

1. Относительное движение в одном направлении;

2. Относительная скорость тел, движущихся под прямым углом друг к другу;

3. Относительная скорость течения реки;

4. Нахождение времени переплывания реки при движении перпендикулярно течению реки.

Просмотр содержимого документа
«Решение задач на тему: «Относительность движения и сложение скоростей».»

Решение задач на тему:

Относительное движение и сложение скоростей

1. Относительное движение в одном направлении

По шоссе движется перевозчик со скоростью 13 м/с. В том же направлении движется другой перевозчик со значением скорости, равным 12,2 м/с. В ответе запиши , с какой скоростью по модулю движется первый перевозчик относительно другого.

Запишем краткое условие к этой задаче.

Чтобы найти, с какой скоростью по модулю первый перевозчик движется относительно другого, необходимо заметить, что они оба движутся в одном направлении.

Задачи на вектор скорости

Найти скорость, с которой первый перевозчик движется относительно другого, очень просто.

Нужно отнять от его вектора скорости V⃗1 вектор V⃗2 , с которой движется другой перевозчик.

Чтобы это сделать, нужно к вектору V⃗1 прибавить вектор V⃗2, только поменяв его направление.

Задачи на вектор скорости

Результирующий вектор V⃗ получим, соединив начало первого вектора с концом последнего.

Задачи на вектор скорости

Получим вектор V⃗ красного цвета.

Чтобы найти его числовое значение, нужно от числового значения вектора V⃗1 отнять числовое значение вектора V⃗2 и результат взять по модулю.

2. Относительная скорость тел, движущихся под прямым углом друг к другу

По свежеположенной дороге перемещается гусеничный трактор , имея скорость 6,3 км/ч. Перпендикулярно движется другой гусеничный трактор со скоростью 8,2 км/ч. Найди значение модуля скорости, с которой движется первый гусеничный трактор относительно другого.

Запишем краткое условие к этой задаче.

Как мы видим, первый гусеничный трактор движется под углом 90 градусов к другому.

Покажем направления их скоростей с помощью векторов V⃗1 и V⃗2.

Задачи на вектор скорости

Чтобы найти скорость, с которой движется первый гусеничный трактор относительно другого, необходимо векторно от скорости первого V⃗1 отнять скорость второго V⃗2.

Отнимание вектора V⃗2 проще заменить сложением вектора, противоположного ему: −V⃗2.

Задачи на вектор скорости

Чтобы найти результирующую скорость V⃗ , необходимо векторно сложить векторы V⃗1 и −V⃗2 . Для интереса попробуем это сделать двумя способами.

Выстраиваем их друг за другом, чтобы получились стороны треугольника.

Или соединяем начала этих векторов — тогда будем использовать правило параллелограмма.

Задачи на вектор скорости

Для сложения по правилу треугольника просто соединяем начало первого вектора с концом последнего.

Для сложения по правилу параллелограмма дорисовываем ещё две стороны напротив уже имеющихся двух.

Должен получиться один и тот же вектор V⃗ . Изобразим его красным.

Задачи на вектор скорости

Результат сложения не зависит от выбора правила сложения — по правилу треугольника или параллелограмма.

Как видно, у нас получился прямоугольный треугольник со сторонами V⃗1 , −V⃗2 , V⃗ .

По условию задачи нам известны две его стороны, это два катета:

Используя теорему Пифагора, мы можем найти гипотенузу V⃗:

Задачи на вектор скорости

Задачи на вектор скорости

3. Относительная скорость течения реки

Величина скорости пловца вверх по течению реки относительно припаркованного возле магазина мотоцикла — 28,5 км/ч, а вниз по реке — 32,9 км/ч.

Напиши , с какой скоростью по модулю движется река относительно припаркованного возле магазина мотоцикла.

Запишем краткое условие к этой задаче.

Попробуем представить себе, как движется пловец по течению. Если обозначить эту скорость V⃗1, а течение реки V⃗2, то, скорее всего, это будет выглядеть так:

Задачи на вектор скорости

Как видно, результирующий вектор V⃗ получился равным сумме векторов V⃗1 и V⃗2 .

Именно с такой скоростью движется пловец по течению.

Если показывать движение пловца против течения, то с теми же обозначениями получим:

Задачи на вектор скорости

Как видно, уже в этом случае результирующий вектор скорости пловца V⃗ стал меньше, т.к. он равен разности векторов V⃗ 1 и V⃗ 2 . Оно и понятно, ведь против течения двигаться сложнее, скорость пловца меньше из-за встречного течения воды.

Это хорошо, что мы представили себе эту задачу. Но чтобы её решить, нужно составить уравнения движения по течению и против течения реки:

В математике это называется системой уравнений.

Не забывай, что найти нам нужно , с какой скоростью по модулю движется река относительно припаркованного возле магазина мотоцикла, т.е. V⃗2.

Попробуем выразить её из первого уравнения. Для этого V⃗1 перенесётся в правую сторону и поменяет знак:

Как видно, найти значение V2 мы пока не можем, т.к. не знаем скорости пловца V1.

Но для этого нам дано второе уравнение в системе.

Выразим его оттуда.

Нам нужно подставить вместо обозначения V1 его значение 28,5+V2 в уравнение:

В итоге , с какой скоростью по модулю движется река относительно припаркованного возле магазина мотоцикла, мы узнали — 2,2 км/ч.

4. Нахождение времени переплывания реки при движении перпендикулярно к течению реки

Лайнер, двигаясь под углом 90 градусов к течению реки , обладая скоростью 4,3 м/с, переплывает реку шириной 370 м. Скорость течения реки — 2,1 м/с. В ответе укажи время, нужное лайнеру , чтобы переплыть реку.

Запишем краткое условие к этой задаче.

Обозначим скорость лайнера V⃗1, а скорость течения реки V⃗2.

Покажем на рисунке, как направлены векторы их скоростей.

Задачи на вектор скорости

Естественно, лайнер не сможет уже плыть прямо. Течение реки будет действовать вправо и лайнер начнёт смещаться понемногу в ту сторону, куда оно направлено.

Можно показать, конечно, как точно будет направлен результирующий вектор скорости.

Для этого нужно сложить скорости V⃗1 и V⃗2 по правилу треугольника или по правилу параллелограмма.

Правильно это сделать так:

выстраиваем их друг за другом, чтобы получились стороны треугольника

или соединяем начала этих векторов — тогда используем правило параллелограмма.

Задачи на вектор скорости

Для сложения по правилу треугольника просто соединяем начало первого вектора с концом последнего.

Для сложения по правилу параллелограмма дорисовываем ещё две стороны напротив уже имеющихся двух.

Должен получиться один и тот же вектор V⃗ . Нарисуем его красным цветом.

Задачи на вектор скорости

Лайнер плывёт, но сносится течением реки.

Задачи на вектор скорости

Однако лайнер постоянно стремится переплыть реку со скоростью V⃗1. Именно с этой скоростью лайнер перемещается к противоположному берегу.

Поэтому в данной задаче нам нужна только скорость лайнера V⃗1 и ширина реки 370 м.

Чтобы найти время, нужное лайнеру , чтобы переплыть реку, необходимо всё расстояние в 370 м разделить на скорость лайнера V⃗1.

Задачи на вектор скорости

Итак, время, нужное лайнеру , чтобы переплыть реку, составило 86,05c.

Видео:Лекция 4.1 | Радиус-вектор, скорость и ускорение | Александр Чирцов | ЛекториумСкачать

Лекция 4.1 | Радиус-вектор, скорость и ускорение | Александр Чирцов | Лекториум

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Видео:Физика: Понятие Вектор, Вектор СкоростиСкачать

Физика: Понятие Вектор, Вектор Скорости

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Задачи на вектор скорости

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Задачи на вектор скорости

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Задачи на вектор скорости

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

Задачи на вектор скорости

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Видео:Как найти проекцию вектора скорости и ускорения. Выполнялка 112Скачать

Как найти проекцию вектора скорости и ускорения. Выполнялка 112

Вектор скорости материальной точки

Задачи на вектор скорости

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Задачи на вектор скорости

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Задачи на вектор скорости

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Видео:Урок 8. Векторные величины. Действия над векторами.Скачать

Урок 8. Векторные величины. Действия над векторами.

Как найти вектор ускорения материальной точки

Задачи на вектор скорости

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Задачи на вектор скорости

Видео:Мгновенная скорость (видео 6)| Векторы. Прямолинейное движение | ФизикаСкачать

Мгновенная скорость (видео 6)| Векторы. Прямолинейное движение  | Физика

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Задачи на вектор скорости

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Видео:Физика | Ликбез по векторамСкачать

Физика | Ликбез по векторам

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Задачи на вектор скорости

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Видео:Выразить векторы. Разложить векторы. Задачи по рисункам. ГеометрияСкачать

Выразить векторы. Разложить векторы. Задачи по рисункам. Геометрия

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Задачи на вектор скорости

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

💥 Видео

Физика 7 класс (Урок№8 - Скорость.)Скачать

Физика 7 класс (Урок№8 - Скорость.)

Определение параметров движения по заданному радиус-вектору. Векторный способ задания движения.Скачать

Определение параметров движения по заданному радиус-вектору. Векторный способ задания движения.

ВЕКТОРЫ решение задач 9 класс АтанасянСкачать

ВЕКТОРЫ решение задач 9 класс Атанасян

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 классСкачать

УСКОРЕНИЕ - Что такое равноускоренное движение? Как найти ускорение // Урок Физики 9 класс

Эглит М.Э.- Основы механики сплошных сред - 12. Об определяющих соотношениях в моделях сплошных средСкачать

Эглит М.Э.- Основы механики сплошных сред - 12. Об определяющих соотношениях в моделях сплошных сред

Построение проекции вектора на осьСкачать

Построение проекции вектора на ось

Найти среднюю скоростьСкачать

Найти среднюю скорость

2.4. Радиус-вектор и вектор перемещенияСкачать

2.4. Радиус-вектор и вектор перемещения

Урок 11. Решение задач на действия с векторамиСкачать

Урок 11. Решение задач на действия с векторами

Лекция 4. ВЕКТОРА │ кинематика с нуляСкачать

Лекция 4. ВЕКТОРА │ кинематика с нуля

Мгновенный центр скоростейСкачать

Мгновенный центр скоростей

Векторы и действия над ними, проекция вектора на координатные оси. 9 класс.Скачать

Векторы и действия над ними, проекция вектора на координатные оси.  9 класс.
Поделиться или сохранить к себе: