Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Докажите, что если четырёхугольник можно разрезать на два вписанных четырёхугольника, тот этот четырёхугольник либо трапеция, либо параллелограмм.

Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Ваш ответ

Видео:Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать

Что такое выпуклый четырёхугольник? | Математика 8 класс  |  Геометрия 8 класс | МегаШкола

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,680
  • разное 16,822

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать

8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4

Четырехугольники

теория по математике 📈 планиметрия

Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольниковОпределение

Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Видео:ОГЭ Задание 25 Свойства вписанного и описанного четырехугольникаСкачать

ОГЭ Задание 25 Свойства вписанного и описанного четырехугольника

Виды и свойства выпуклых четырехугольников

Сумма углов выпуклого четырехугольника равна 360 градусов.

Прямоугольник

Прямоугольник – это четырехугольник, у которого все углы прямые.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольниковНа рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

  1. Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
  2. Диагонали прямоугольника равны (АС=ВD).
  3. Диагонали пересекаются и точкой пересечения делятся пополам.
  4. Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
  5. Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:

S=ab, где a и b соседние стороны прямоугольника.

Квадрат

Квадрат – это прямоугольник, у которого все стороны равны.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольниковСвойства квадрата

  1. Диагонали квадрата равны (BD=AC).
  2. Диагонали квадрата пересекаются под углом 90 градусов.
  3. Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
  4. Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
  5. Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Параллелограмм

Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Ромб – это параллелограмм, у которого все стороны равны.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Трапеция

Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Виды трапеций

Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

углы А и С равны по 90 градусов

Средняя линия трапеции

Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.

Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.

По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17

Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).

Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .

Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Для нахождения площади трапеции в справочном материале есть формула

S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63

pазбирался: Даниил Романович | обсудить разбор | оценить

Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .

Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:

с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88

pазбирался: Даниил Романович | обсудить разбор | оценить

Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8

Для выполнения данного задания надо подставить все известные данные в формулу:

12,8= d 1 × 16 × 2 5 . . 2 . .

В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .

Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2

Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4

pазбирался: Даниил Романович | обсудить разбор | оценить

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.

При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.

Задание №1

Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.

Объектыяблонитеплицасарайжилой дом
Цифры

Решение

Для решения 1 задачи работаем с текстом и планом одновременно:

при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.

Итак, получили следующее:

1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.

Заполняем нашу таблицу:

Объектыяблонитеплицасарайжилой дом
Цифры3517

Записываем ответ: 3517

Задание №2

Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?

Решение

Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».

Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.

Задание №3

Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.

Решение

Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Задание №4

Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.

Решение

Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м

Задание №5

Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.

Номер магазинаРасход краскиМасса краски в одной банкеСтоимость одной банки краскиСтоимость доставки заказа
10,25 кг/кв.м6 кг3000 руб.500 руб.
20,4 кг/кв.м5 кг1900 руб.800 руб.

Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?

Решение

Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:

1 магазин: 232х0,25=58 кг

2 магазин: 232х0,4=92,8 кг

Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:

1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)

2 магазин: 92,8:5=18,56; значит надо 19 банок.

Вычислим стоимость краски в каждом магазине плюс доставка:

1 магазин: 10х3000+500=30500 руб.

2 магазин: 19х1900+800=36900 руб.

Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.

Ответ: см. решение

pазбирался: Даниил Романович | обсудить разбор | оценить

Видео:3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Видео:№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, еслиСкачать

№369. Найдите углы A, B и C выпуклого четырехугольника ABCD, если

Разделы Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Дополнительно

Выпуклый четырехугольник разрезан прямыми на 25 вписанных четырехугольников

Задача по математике — 6838

Дан треугольник со сторонами 25, 25 и 48.
а) Докажите, что он тупоугольный.
б) Найдите расстояние между центрами его вписанной и описанной окружностей.

Задача по математике — 6839

Длины сторон $AB$, $AD$, $BC$ и $CD$ выпуклого четырёхугольника $ABCD$ в указанном порядке образуют арифметическую прогрессию.
а) Докажите, что в этот четырёхугольник можно вписать окружность.
б) Найдите радиус этой окружности, если известно, что $AB=6$, $AD=8$, $BC=10$, $CD=12$ и $BD=BC$.

Задача по математике — 6840

Дан выпуклый четырёхугольник $ABCD$ со сторонами $AB=3$, $BC=CD=5$, $AD=8$ и диагональю $AC=7$.
а) Докажите, что около него можно описать окружность.
б) Найдите диагональ $BD$.

Задача по математике — 6841

Сторона $AC$ треугольника $ABC$ больше стороны $AB$. Вписанная в треугольник окружность касается стороны $BC$ в точке $M$, а вневписанная — в точке $N$.
а) Докажите, что $MN=AC-AB$.
б) Найдите расстояние между центрами указанных окружностей, если сумма их радиусов равна 24, а $MN=10$.

Задача по математике — 6842

Диагонали $AC$ и $BD$ выпуклого четырёхугольника $ABCD$ перпендикулярны.
а) Докажите, что $AB^+CD^=BC^+AD^$.
б) Известно, что в этот четырёхугольник можно вписать окружность. Найдите её радиус, если $BC=8$, $CD=12$, $angle BAD=150^$.

Задача по математике — 6843

Точка $M$ — середина гипотенузы $AB$ прямоугольного треугольника $ABC$. На отрезке $CM$ как на диаметре построена окружность.
а) Докажите, что она проходит через середины катетов.
б) $AP$ и $BQ$ — касательные к этой окружности ($P$ и $Q$ — точки касания). Найдите отношение $AP:BQ$, если известно, что $tgangle ABC=2$.

Задача по математике — 6844

Четырёхугольник $ABCD$ с перпендикулярными диагоналями $AC$ и $BD$ вписан в окружность.
а) Докажите, что прямая, проходящая через точку пересечения диагоналей четырёхугольника перпендикулярно стороне $BC$, делит пополам сторону $AD$.
б) Найдите стороны четырёхугольника $ABCD$, если известно, что $AC=84$, $BD=77$, а диаметр окружности равен 85.

Задача по математике — 6845

Отрезок $CD$ — биссектриса треугольника $ABC$. Окружность, проходящая через точки $C$ и $D$ касается стороны $AB$ и пересекает стороны $AC$ и $BC$ в точках $M$ и $N$ соответственно.
а) Докажите, что $MNparallel AB$.
б) Найдите $MN$, если известно, что $AD=2$, $BD=4$ и $AM=1$.

Задача по математике — 6846

Основание и боковая сторона равнобедренного треугольника равны 26 и 38 соответственно.
а) Докажите, что средняя линия треугольника, параллельная основанию, пересекает окружность, вписанную в треугольник.
б) Найдите длину отрезка этой средней линии, заключённого внутри окружности.

Задача по математике — 6847

В окружность вписан четырёхугольник с тремя равными сторонами.
а) Докажите, что в этом четырёхугольнике есть параллельные стороны.
б) Найдите диагонали четырёхугольника, если известно, что радиус окружности равен 25, а каждая из трёх равных сторон четырёхугольника равна 30.

Задача по математике — 6848

В выпуклом четырёхугольнике $ABCD$ известно, что $cosangle ABC=-cosangle ADC$.
а) Докажите, что $angle ABD=angle ACD$.
б) Найдите радиус окружности, описанной около этого четырёхугольника, если известно, что $angle ACB=30^$, $BC=6$, а высоты треугольников $ABD$ и $CBD$, проведённые из вершины $B$, равны.

Задача по математике — 6849

Окружность с центром $O$, вписанная в треугольник $ABC$, касается сторон $AB$ и $AC$ в точках $M$ и $N$ соответственно, $AH$ — высота треугольника. Прямые $MN$ и $BC$ пересекаются в точке $K$.
а) Докажите, что $angle MKB=angle OAH$.
б) Найдите $AK$, если известно, что $angle ABC=77^$, $angle ACB=17^$, а отрезок, соединяющий точку $H$ с серединой $MN$, равен 8.

Задача по математике — 6850

На основаниях $AD$ и $BC$ трапеции $ABCD$ построены квадраты $ADEF$ и $BCGH$, расположенные вне трапеции.
а) Докажите, что прямая $FG$ проходит через точку пересечения диагоналей трапеции.
б) Прямая, проходящая через центры квадратов, пересекает основание $BC$ в точке $M$. Найдите $BM$, если известно, что $BC=20$, $ACperp BD$ и $BD:AC=3:2$.

Задача по математике — 6851

Окружность, вписанная в равнобедренную трапецию $ABCD$, касается боковых сторон $AB$ и $CD$ в точках $M$ и $N$ соответственно. Отрезок $AN$ пересекает окружность в точке $K$, а луч $MK$ пересекает основание $AD$ в точке $L$.
а) Докажите, что треугольник $AKL$ подобен треугольнику $MAL$.
б) Найдите отношение $AL:LD$.

Задача по математике — 6852

$AA_$, $BB_$ и $CC_$ — высоты остроугольного треугольника $ABC$ с углом $45^$ при вершине $C$.
а) Докажите, что треугольник $A_B_C_$ прямоугольный.
б) Найдите отношение, в котором высота $AA_$ делит отрезок $B_C_$, если известно, $BC=2B_C_$.

🎬 Видео

Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать

Вписанные  и описанные четырехугольники. Практическая часть. 9 класс.

Персидская олимпиадная задача по математикеСкачать

Персидская олимпиадная задача по математике

Самый короткий тест на интеллект Задача Массачусетского профессораСкачать

Самый короткий тест на интеллект Задача Массачусетского профессора

Вписанные четырехугольники. 9 класс.Скачать

Вписанные четырехугольники. 9 класс.

8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

11 класс, 43 урок, Вписанный четырехугольникСкачать

11 класс, 43 урок, Вписанный четырехугольник

№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,Скачать

№371. Докажите, что выпуклый четырехугольник ABCD является параллелограммом,

✓ Задача про комплексное число | Ботай со мной #101 | Борис ТрушинСкачать

✓ Задача про комплексное число | Ботай со мной #101 | Борис Трушин

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин

Задание 25 Вписанный четырёхугольникСкачать

Задание 25 Вписанный четырёхугольник

Планиметрия. Вписанный четырехугольник. Задание 16 (25)Скачать

Планиметрия. Вписанный четырехугольник. Задание 16 (25)

8 класс, 2 урок, Выпуклый многоугольникСкачать

8 класс, 2 урок, Выпуклый многоугольник

№378. Докажите, что параллелограмм является выпуклым четырехугольником.Скачать

№378. Докажите, что параллелограмм является выпуклым четырехугольником.
Поделиться или сохранить к себе: