Вписанные четырехугольники и их свойства |
Теорема Птолемея |
Видео:Свойство четырехугольника, в который можно вписать окружностьСкачать
Вписанные четырёхугольники и их свойства
Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .
Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .
Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .
Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.
Теорема 1 доказана.
Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.
Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).
Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.
Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.
Теорема 2 доказана.
Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.
Фигура | Рисунок | Свойство | ||||||||||||||||||||||||||||||
Окружность, описанная около параллелограмма | Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | |||||||||||||||||||||||||||||||
Окружность, описанная около ромба | Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | |||||||||||||||||||||||||||||||
Окружность, описанная около трапеции | Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | |||||||||||||||||||||||||||||||
Окружность, описанная около дельтоида | Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | |||||||||||||||||||||||||||||||
Произвольный вписанный четырёхугольник |
Окружность, описанная около параллелограмма | ||
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником. | ||
Окружность, описанная около ромба | ||
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом. | ||
Окружность, описанная около трапеции | ||
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией. | ||
Окружность, описанная около дельтоида | ||
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников. | ||
Произвольный вписанный четырёхугольник | ||
Окружность, описанная около параллелограмма |
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Видео:Вписанная и описанная окружность - от bezbotvyСкачать
Теорема Птолемея
Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.
Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).
Докажем, что справедливо равенство:
Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).
Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
откуда вытекает равенство:
(1) |
Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:
Видео:Четырехугольники, вписанные в окружность. 9 класс.Скачать
Можно ли вписать четырёхугольник в окружность? Когда можно вписать?
Содержание:
Почти в любой четырехугольник можно вписать окружность. Трапеция, прямоугольник и квадрат для этого подходят всегда, тогда как сложные геометрические фигуры с четырьмя углами вписываются в круг избирательно. Рассмотрим условия, при которых 4-угольник может касаться точек на окружности всеми вершинами.
Видео:Любой прямоугольник можно вписать в окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Вписанный
Вписанной называется фигура, вершины которой располагаются на окружности. Все треугольники и правильные 4-угольники, вроде квадрата и прямоугольника, размещаются внутри круга, причём их вершины совмещаются с точками на окружности. Вокруг неправильной фигуры с четырьмя углами не всегда можно описать круг. Разбираемся, какие условия нужно выполнить для решения проблемы.
У квадрата и прямоугольника все углы прямые – равны 90°, но это не ключ к разгадке. Случай с параллелограммом тому подтверждение. Чем примечательны прямоугольные 4-угольники? Может дело в сумме углов?
Трапеция в круг вписывается, но только равнобедренная. Одно из её свойств – сумма внутренних углов равна 360°, а соседних – 180°. Получается, что четырехугольник можно вписать в окружность, если сумма противоположных углов равняется 180°. Проверим на практике.
Помните: правило применимо только для выпуклых фигур, расположенных по одну сторону от проходящих через все стороны прямых.
Выпуклый дельтоид вписывается в круг, когда имеет пару прямых углов – называется прямоугольным.
Задача
Известны величины двух соседних углов вписанного четырёхугольника: 65° и 83°. Вычислить размеры сразу большего, затем – меньшего из оставшихся.
Известно, что сумма противоположных углов указанной геометрической фигуры равняется 180°. Отнимем от значения сначала большую цифру, затем – меньшую, чтобы выполнить условия задачи – найти неизвестные значения в указанном порядке.
180 – 65 = 115° – больший угол, 180 – 83 = 97° – меньший.
Видео:Вписанный в окружность четырёхугольник.Скачать
В какой четырехугольник можно вписать окружность
Описанным называют 4-угольник, стороны которого касаются круга. Существует теорема, показывающая, когда в четырехугольник можно вписать окружность: сумма его противоположных сторон должна быть одинаковой: AB + CD = BC + AD. В случае с прямоугольником условие не выполняется.
Правило работает для дельтоида, квадрата и даже неправильного выпуклого 4-угольника, подпадающего под теорему.
В параллелограмм вписывается круг в случае, если он является ромбом.
Задача
Стороны описанной фигуры относятся как 1:2:3. Найти длину четвёртой, если периметр равняется 32 см.
Составим уравнение. Зная, что суммы противоположных сторон 4-угольника равны:
Периметр равняется суме сторон: P = AB + ВС + AD + BC либо x + 2x + 2x + 3x = 32.
Видео:Всякий равносторонний треугольник является остроугольным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Всякий ли четырехугольник можно вписать в окружность
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90° , то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.
Проверим каждое из утверждений.
1) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90° , то эти две прямые параллельны» — верно, по признаку параллельности прямых.
2) «В любой четырёхугольник можно вписать окружность» — неверно, поскольку в выпуклый четырёхугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.
3) «Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника» — верно, по свойству треугольника.
💥 Видео
Вписанные и описанные четырехугольники. Практическая часть. 9 класс.Скачать
Вписанные четырёхугольникиСкачать
Окружность, вписанная в четырёхугольник.Скачать
Описанная и вписанная окружности четырехугольника - 8 класс геометрияСкачать
3 правила для вписанного четырехугольника #shortsСкачать
Всякий равносторонний треугольник является равнобедренным. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
8 класс Геометрия. Окружность вписанная в четырехугольник и описанная около четырехугольника Урок #4Скачать
ОПИСАННЫЕ И ВПИСАННЫЕ ОКРУЖНОСТИ ЧЕТЫРЕХУГОЛЬНИКА . §10 геометрия 8 классСкачать
Геометрия 8 класс (Урок№32 - Вписанная окружность.)Скачать
Вписанные четырехугольники. 9 класс.Скачать
11 класс, 43 урок, Вписанный четырехугольникСкачать
Урок 14. Геометрия. Треугольник и окружность. Четырехугольник и окружность.Скачать
В любой прямоугольник можно вписать окружность. | ОГЭ 2017 | ЗАДАНИЕ 13 | ШКОЛА ПИФАГОРАСкачать
Вписанная окружностьСкачать