Виды четырехугольников с чертежами 8 класс

Содержание
  1. Четырехугольник
  2. Определение четырехугольника
  3. Виды четырехугольников
  4. Обозначение четырехугольника
  5. Соседние вершины четырехугольника
  6. Смежные стороны четырехугольника
  7. Простой четырехугольник. Самопересекающийся четырехугольник
  8. Выпуклый четырехугольник
  9. Правильный четырехугольник
  10. Периметр четырехугольника
  11. Угол четырехугольника
  12. Внешний угол четырехугольника
  13. Диагональ четырехугольника
  14. Сумма углов четырехугольника
  15. Сумма внешних углов четырехугольника
  16. Четырехугольник — виды и свойства с примерами решения
  17. Внутренние и внешние углы четырехугольника
  18. Сумма внутренних углов выпуклого четырёхугольника
  19. Сумма внешних углов выпуклого четырёхугольника
  20. Параллелограмм
  21. Параллелограмм и его свойства
  22. Признаки параллелограмма
  23. Прямоугольник
  24. Признак прямоугольника
  25. Ромб и квадрат
  26. Свойства ромба
  27. Трапеция
  28. Средняя линия треугольника
  29. Средняя линия трапеции
  30. Координаты середины отрезка
  31. Теорема Пифагора
  32. Справочный материал по четырёхугольнику
  33. Пример №1
  34. Признаки параллелограмма
  35. Пример №2 (признак параллелограмма).
  36. Прямоугольник
  37. Пример №3 (признак прямоугольника).
  38. Ромб. Квадрат
  39. Пример №4 (признак ромба)
  40. Теорема Фалеса. Средняя линия треугольника
  41. Пример №5
  42. Пример №6
  43. Трапеция
  44. Пример №7 (свойство равнобедренной трапеции).
  45. Центральные и вписанные углы
  46. Пример №8
  47. Вписанные и описанные четырёхугольники
  48. Пример №9
  49. Пример №10
  50. Геометрия. Урок 4. Четырехугольники
  51. Определение четырехугольника
  52. Выпуклые четырехугольники
  53. Параллелограмм
  54. Прямоугольник
  55. Квадрат
  56. Трапеция
  57. Примеры решений заданий из ОГЭ

Видео:Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

Четырехугольник

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Определение четырехугольника

Определение 1. Четырехугольник − это замкнутая ломаная линия, состоящая из четырех звеньев.

Определение 2. Четырехугольник − геометрическая фигура (многоугольник), состоящая из четырех точек, никакие три из которых не лежат на одной прямой и последовательно соединенные четырьмя отрезками, называемыми сторонами четырехугольника.

Объединение четырехугольника и ограниченной им части плоскости также называют четырехугольником.

Любой четырехугольник разделяет плоскость на две части, одна из которых называется внутренней областью четырехугольника, а другая внешней областью четырехугольника.

Видео:Как решить любую задачу с четырёхугольниками? | Математика TutorOnlineСкачать

Как решить любую задачу с четырёхугольниками? | Математика TutorOnline

Виды четырехугольников

Четырехугольники бывают следующих видов:

  • Параллелограмм − четырехугольник, у которого противоположные стороны попарно вправны и параллельны (Рис.1).
  • Трапеция − четырехугольник, у которого две противоположные стороны параллельны (Рис.2).
  • Прямоугольник − четырехугольник, у которого все углы прямые (Рис.3).
  • Ромб − четырехугольник, у которого все стороны равны (Рис.4).
  • Квадрат − четырехугольник, у которого все стороны равны и все углы прямые (Рис.5).
  • Дельтоид − четырехугольник, у которого есть две пары равных смежных сторон (Рис.6, Рис.6.1).
  • Антипараллелограмм (или контрпараллелограмм)− четырехугольник, у которого противоположные стороны равны но не параллельны (с самопересечением) (Рис.7).
Виды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 класс

Видео:Геометрия 8. Урок 1 - Виды четырехугольников - генеалогическое древо :)Скачать

Геометрия 8. Урок 1 - Виды четырехугольников - генеалогическое древо :)

Обозначение четырехугольника

Обозначают четырехугольник буквами, стоящих при его вершинах. Называют четырехугольник чередовав буквы при его вершинах по часовой стрелке или против часовой стрелки. Например, четырехугольник на рисунке 8 называют ( small A_1A_2A_3A_4 ) или ( small A_4A_3A_2A_1 ) (Рис.8).

Виды четырехугольников с чертежами 8 класс

Видео:Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!Скачать

Параллелограмм, прямоугольник, ромб,квадрат,трапеция, все свойства и определения!!!

Соседние вершины четырехугольника

Вершины четырехугольника называются соседними, если они являются концами одной из его сторон.

На рисунке 8 вершины ( small A_2 ) и ( small A_3 ) являются соседними, так как они являются концами стороны ( small A_2A_3. )

Видео:ГЕОМЕТРИЯ 8 класс: Четырехугольники | Видеоурок с теорией и решением задачиСкачать

ГЕОМЕТРИЯ 8 класс: Четырехугольники | Видеоурок с теорией и решением задачи

Смежные стороны четырехугольника

Стороны четырехугольника называются смежными, если они имеют общую вершину.

На рисунке 8 стороны ( small A_2A_3 ) и ( small A_3A_4 ) являются смежными, так как они имеют общую вершину ( small A_3. )

Видео:Миникурс по геометрии. ЧетырехугольникиСкачать

Миникурс по геометрии. Четырехугольники

Простой четырехугольник. Самопересекающийся четырехугольник

Четырехугольник называется простым, если его несмежные стороны не имеют общих точек (внутренних или концевых).

Виды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 класс

На рисунках 9 и 9.1 изображены простые четырехугольники так как стороны четырехугольников не имеют самопересечений. А на рисунке 10 четырехугольник не является простым, так как стороны ( small A_1A_4 ) и ( small A_2A_3 ) пересекаются. Такой четырехугольник называется самопересекающийся.

Видео:Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.Скачать

Геометрия 8. Урок 12 - Площадь четырехугольников. Формулы.

Выпуклый четырехугольник

Четырехугольник называется выпуклым, если она лежит по одну сторону от прямой, проходящей через любую его сторону.

Виды четырехугольников с чертежами 8 класс

На рисунке 11 четырехугольник лежит по одну сторону от прямых ( small m, n, p, q, ) проходящих через стороны четырехугольника. Поэтому такой четырехугольник выпуклый.

Виды четырехугольников с чертежами 8 класс

На рисунке 12 прямая ( small m) делит четырехугольник на две части, т.е. четырехугольник не лежит по одну сторону от прямой ( small m). Следовательно, этот четырехугольник не является выпуклым.

Видео:Легко ли быть 8миклассником КонтрольнаяСкачать

Легко ли быть 8миклассником Контрольная

Правильный четырехугольник

Простой четырехугольник называется правильным, если все его стороны равны и все углы равны. Квадрат является правильным четырехугольником, так как все его стороны равны и все его углы равны 90°. Среди четырехугольников других правильных четырехугольников не существует.

На рисунке 5 изображен правильный четырехугольник (квадрат), так как у данного четырехугольника все стороны равны и все углы равны. Четырехугольник (ромб) на на рисунке 4 не является правильным, так как все стороны четырехугольника равны, но все его углы не равны друг другу. Прямоугольник также не является правильным четырехугольником, так как несмотря на то, что все углы прямоугольника равны, но все четыре стороны прямоугольника не равны друг другу.

Видео:Четырехугольники. Вебинар | МатематикаСкачать

Четырехугольники. Вебинар | Математика

Периметр четырехугольника

Сумма всех сторон четырехугольника называется периметром четырехугольника. Для четырехугольника ( small A_1A_2A_3A_4 ) периметр вычисляется из формулы:

( small P=A_1A_2+A_2A_3+A_3A_4+A_4A_1 )

Видео:ЧЕТЫРЕХУГОЛЬНИК и его элементы. §1 геометрия 8 классСкачать

ЧЕТЫРЕХУГОЛЬНИК и его элементы. §1 геометрия 8 класс

Угол четырехугольника

Углом (внутренним углом) четырехугольника при данной вершине называется угол между двумя сторонами четырехугольника, сходящимися к этой вершине. Если четырехугольник выпуклый, то все углы четырехугольника меньше 180°. Если же четырехугольник невыпуклый, то он имеет внутренний угол больше 180° (угол ( small alpha ) на рисунке 13).

Виды четырехугольников с чертежами 8 класс

Видео:Параллелограмм. 8 класс.Скачать

Параллелограмм. 8 класс.

Внешний угол четырехугольника

Внешним углом четырехугольника при данной вершине называется угол смежный внутреннему углу четырехугольника при данной вершине.

Виды четырехугольников с чертежами 8 класс

На рисунке 14 угол α является внутренним углом четырехугольника при вершине ( small A_4, ) а углы β и γ являются внешними углами четырехугольника при этой же вершине. Очевидно, что при каждой вершине есть два внешних угла.

Видео:Алгебра 7 класс с нуля | Математика | УмскулСкачать

Алгебра 7 класс с нуля | Математика | Умскул

Диагональ четырехугольника

Диагоналями называют отрезки, соединяющие две несоседние вершины четырехугольника.

Очевидно, что у четырехугольника две диагонали.

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Сумма углов четырехугольника

Для любого простого четырехугольника по крайней мере один диагональ делит его на два треугольника. Сумма углов треугольника равна 180°. Поэтому сумма углов простого четырехугольника равна 360°.

Видео:ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТСкачать

ВСЯ ГЕОМЕТРИЯ ИЗ ОГЭ ПО МАТЕМАТИКЕ 2023 ЗА 40 МИНУТ

Сумма внешних углов четырехугольника

Пусть задан четырехугольник ( small A_1A_2A_3A_4 .) Внешний угол при вершине ( small A_1) равен ( small 180°-angle A_1.) Аналогично, внешние углы при вершинах ( small A_2, A_3, A_4 ) равны ( small 180°-angle A_2, ) ( small 180°-angle A_3, ) ( small 180°-angle A_4, ) соответственно. Тогда сумма внешних углов четырехугольника равна:

( small 180°-angle A_1 ) ( small +180°-angle A_2 ) ( small +180°-angle A_3 ) ( small +180°-angle A_4 )( small =720°-(angle A_1+angle A_2+angle A_3+angle A_4 )) ( small =720°-360°=360°. )

Задача 1. Доказать, что длина любой стороны четырехугольника меньше суммы длин трех его сторон.

Решение. Рассмотрим произвольный четырехугольник ABCD (Рис.15). Покажем, например, что AB

Видео:ВСЯ ГЕОМЕТРИЯ 8 КЛАСС ЗА 15 МИНУТ / АТАНАСЯН / К ОГЭСкачать

ВСЯ ГЕОМЕТРИЯ 8 КЛАСС ЗА 15 МИНУТ / АТАНАСЯН / К ОГЭ

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Виды четырехугольников с чертежами 8 класс

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Виды четырехугольников с чертежами 8 класс

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Виды четырехугольников с чертежами 8 класс

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Виды четырехугольников с чертежами 8 класс

Видео:Четырехугольники. Геометрия 8 класс.Скачать

Четырехугольники.  Геометрия 8 класс.

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Виды четырехугольников с чертежами 8 классуглы Виды четырехугольников с чертежами 8 классявляются внешними.

Виды четырехугольников с чертежами 8 класс

Каждый внутренний угол выпуклого четырёхугольника меньше Виды четырехугольников с чертежами 8 классГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Виды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Виды четырехугольников с чертежами 8 классДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Виды четырехугольников с чертежами 8 класс

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Виды четырехугольников с чертежами 8 класс

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Виды четырехугольников с чертежами 8 класс

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Виды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Виды четырехугольников с чертежами 8 класс

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Виды четырехугольников с чертежами 8 класс

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Виды четырехугольников с чертежами 8 класс

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Виды четырехугольников с чертежами 8 класс

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Виды четырехугольников с чертежами 8 классто параллелограмм Виды четырехугольников с чертежами 8 классявляется ромбом.

Виды четырехугольников с чертежами 8 класс

Доказательство теоремы 1.

Дано: Виды четырехугольников с чертежами 8 классромб.

Докажите, что Виды четырехугольников с чертежами 8 класс

Доказательство (словестное): По определению ромба Виды четырехугольников с чертежами 8 классПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Виды четырехугольников с чертежами 8 классравнобедренный. Медиана Виды четырехугольников с чертежами 8 класс(так как Виды четырехугольников с чертежами 8 класс), является также и биссектрисой и высотой. Т.е. Виды четырехугольников с чертежами 8 классТак как Виды четырехугольников с чертежами 8 классявляется прямым углом, то Виды четырехугольников с чертежами 8 класс. Аналогичным образом можно доказать, что Виды четырехугольников с чертежами 8 класс

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Виды четырехугольников с чертежами 8 класс

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Виды четырехугольников с чертежами 8 класс

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Виды четырехугольников с чертежами 8 класс

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

План доказательства теоремы 2

Дано: Виды четырехугольников с чертежами 8 классравнобедренная трапеция. Виды четырехугольников с чертежами 8 класс

Докажите: Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Виды четырехугольников с чертежами 8 класстогда Виды четырехугольников с чертежами 8 классЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Виды четырехугольников с чертежами 8 класспроведем параллельную прямую к прямой Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Виды четырехугольников с чертежами 8 классчерез точку Виды четырехугольников с чертежами 8 класс— середину стороны Виды четырехугольников с чертежами 8 класспроведите прямую параллельную Виды четырехугольников с чертежами 8 классКакая фигура получилась? Является ли Виды четырехугольников с чертежами 8 класстрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Виды четырехугольников с чертежами 8 классМожно ли утверждать, что Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Доказательство. Пусть дан треугольник Виды четырехугольников с чертежами 8 класси его средняя линия Виды четырехугольников с чертежами 8 классПроведём через точку Виды четырехугольников с чертежами 8 класспрямую параллельную стороне Виды четырехугольников с чертежами 8 классПо теореме Фалеса, она проходит через середину стороны Виды четырехугольников с чертежами 8 класст.е. совпадает со средней линией Виды четырехугольников с чертежами 8 классТ.е. средняя линия Виды четырехугольников с чертежами 8 класспараллельна стороне Виды четырехугольников с чертежами 8 классТеперь проведём среднюю линию Виды четырехугольников с чертежами 8 классТ.к. Виды четырехугольников с чертежами 8 классто четырёхугольник Виды четырехугольников с чертежами 8 классявляется параллелограммом. По свойству параллелограмма Виды четырехугольников с чертежами 8 классПо теореме Фалеса Виды четырехугольников с чертежами 8 классТогда Виды четырехугольников с чертежами 8 классТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Виды четырехугольников с чертежами 8 класс

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Виды четырехугольников с чертежами 8 класс

Доказательство: Через точку Виды четырехугольников с чертежами 8 класси точку Виды четырехугольников с чертежами 8 класссередину Виды четырехугольников с чертежами 8 класспроведём прямую и обозначим точку пересечения со стороной Виды четырехугольников с чертежами 8 классчерез Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Виды четырехугольников с чертежами 8 классрадиусом 3 единицы. Вычислите значение выражения Виды четырехугольников с чертежами 8 классЕсть ли связь между значением данного выражения и координатой точки Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Виды четырехугольников с чертежами 8 класси Виды четырехугольников с чертежами 8 класси точка Виды четырехугольников с чертежами 8 класскоторая является серединой отрезка Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 классто Виды четырехугольников с чертежами 8 класса отсюда следует, что Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

2) По теореме Фалеса, если точка Виды четырехугольников с чертежами 8 классявляется серединой отрезка Виды четырехугольников с чертежами 8 классто на оси абсцисс точка Виды четырехугольников с чертежами 8 классявляется соответственно координатой середины отрезка концы которого находятся в точках Виды четырехугольников с чертежами 8 класси Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

3) Координаты середины отрезка Виды четырехугольников с чертежами 8 классс концами Виды четырехугольников с чертежами 8 класси Виды четырехугольников с чертежами 8 классточки Виды четырехугольников с чертежами 8 класснаходятся так:

Виды четырехугольников с чертежами 8 класс

Убедитесь, что данная формула верна в случае, если отрезок Виды четырехугольников с чертежами 8 класспараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Виды четырехугольников с чертежами 8 класскак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Виды четырехугольников с чертежами 8 класс

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Виды четырехугольников с чертежами 8 класс

Шаг 4. На сторонах другого квадрата отметьте отрезки Виды четырехугольников с чертежами 8 класскак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Виды четырехугольников с чертежами 8 класс

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Виды четырехугольников с чертежами 8 класс

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Виды четырехугольников с чертежами 8 класс

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Виды четырехугольников с чертежами 8 классто, Виды четырехугольников с чертежами 8 класс— прямоугольный.

Виды четырехугольников с чертежами 8 класс

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Виды четырехугольников с чертежами 8 классявляются Пифагоровыми тройками, то и числа Виды четырехугольников с чертежами 8 класстакже являются Пифагоровыми тройками.

Видео:Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.Скачать

Геометрия 8. Урок 4 - Прямоугольник, ромб, квадрат - свойства и признаки.

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Виды четырехугольников с чертежами 8 класс(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Виды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 класс

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Виды четырехугольников с чертежами 8 класс

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Виды четырехугольников с чертежами 8 класс, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Виды четырехугольников с чертежами 8 класс

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Виды четырехугольников с чертежами 8 класс=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Виды четырехугольников с чертежами 8 класс+ CD (по неравенству треугольника). Тогда Виды четырехугольников с чертежами 8 класс. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Виды четырехугольников с чертежами 8 класс. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Виды четырехугольников с чертежами 8 класс

Решение:

Виды четырехугольников с чертежами 8 класс(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Виды четырехугольников с чертежами 8 класс(АВ CD, ВС-секущая), Виды четырехугольников с чертежами 8 класс(ВС || AD, CD — секущая), Виды четырехугольников с чертежами 8 класс(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Виды четырехугольников с чертежами 8 класс

Доказательство. Виды четырехугольников с чертежами 8 класспо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Виды четырехугольников с чертежами 8 класскак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Виды четырехугольников с чертежами 8 класс

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Виды четырехугольников с чертежами 8 класс

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Виды четырехугольников с чертежами 8 класспо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Виды четырехугольников с чертежами 8 класс Виды четырехугольников с чертежами 8 классУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Виды четырехугольников с чертежами 8 класс

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Виды четырехугольников с чертежами 8 класс

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Виды четырехугольников с чертежами 8 класспо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Виды четырехугольников с чертежами 8 класскак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Виды четырехугольников с чертежами 8 классНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Виды четырехугольников с чертежами 8 класс

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Виды четырехугольников с чертежами 8 класспо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Виды четырехугольников с чертежами 8 класскак вертикальные. Из равенства треугольников следует: ВС= AD и Виды четырехугольников с чертежами 8 классНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Виды четырехугольников с чертежами 8 класс

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Виды четырехугольников с чертежами 8 класс

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Виды четырехугольников с чертежами 8 класс

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Виды четырехугольников с чертежами 8 классМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Виды четырехугольников с чертежами 8 класс. Виды четырехугольников с чертежами 8 класспо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Виды четырехугольников с чертежами 8 класс. Поскольку в параллелограмме противоположные углы равны, то: Виды четырехугольников с чертежами 8 класс. По свойству углов четырёхугольника, Виды четырехугольников с чертежами 8 класс

Следовательно, Виды четырехугольников с чертежами 8 класс: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Виды четырехугольников с чертежами 8 класс

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Виды четырехугольников с чертежами 8 класс

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Виды четырехугольников с чертежами 8 класс

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Виды четырехугольников с чертежами 8 класс

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Виды четырехугольников с чертежами 8 класс. Виды четырехугольников с чертежами 8 класс

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Виды четырехугольников с чертежами 8 класс

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Виды четырехугольников с чертежами 8 класс(рис. 96). Докажем, что ABCD— ромб. Виды четырехугольников с чертежами 8 класспо двум сторонами и углу между ними.

Виды четырехугольников с чертежами 8 класс

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Виды четырехугольников с чертежами 8 класспо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Виды четырехугольников с чертежами 8 класс

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Виды четырехугольников с чертежами 8 класс

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Виды четырехугольников с чертежами 8 класс

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Виды четырехугольников с чертежами 8 класс

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Виды четырехугольников с чертежами 8 класс

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Виды четырехугольников с чертежами 8 класси Виды четырехугольников с чертежами 8 классПроведите с помощью чертёжного угольника и линейки через точки Виды четырехугольников с чертежами 8 класспараллельные прямые, которые пересекут сторону ВС этого угла в точках Виды четырехугольников с чертежами 8 классПри помощи циркуля сравните длины отрезков Виды четырехугольников с чертежами 8 классСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Доказать: Виды четырехугольников с чертежами 8 класс

Доказательство. Проведём через точки Виды четырехугольников с чертежами 8 класспрямые Виды четырехугольников с чертежами 8 класспараллельные ВС. Виды четырехугольников с чертежами 8 класспо стороне и прилежащим к ней углам. У них Виды четырехугольников с чертежами 8 класспо условию, Виды четырехугольников с чертежами 8 класскак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Виды четырехугольников с чертежами 8 класси Виды четырехугольников с чертежами 8 класскак противоположные стороны параллелограммов Виды четырехугольников с чертежами 8 класс

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Виды четырехугольников с чертежами 8 класс

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Виды четырехугольников с чертежами 8 класс

Отложим на луче АС пять равных отрезков: АА,Виды четырехугольников с чертежами 8 классПроведём прямую Виды четырехугольников с чертежами 8 класс. Через точки Виды четырехугольников с чертежами 8 класспроведём прямые, параллельные прямой Виды четырехугольников с чертежами 8 класс. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Виды четырехугольников с чертежами 8 класс, так как точки М и N — середины сторон АВ и ВС.

Виды четырехугольников с чертежами 8 класс

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Виды четырехугольников с чертежами 8 класс(рис. 122), AD = BD, СЕ= BE.

Виды четырехугольников с чертежами 8 класс

Доказать: Виды четырехугольников с чертежами 8 класс

Доказательство. 1) Пусть DE- средняя линия Виды четырехугольников с чертежами 8 класс. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Виды четырехугольников с чертежами 8 класс. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Виды четырехугольников с чертежами 8 класс

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Виды четырехугольников с чертежами 8 класс

Поэтому Виды четырехугольников с чертежами 8 класс. КР— средняя линия треугольника ADC. Поэтому КР || АС и Виды четырехугольников с чертежами 8 класс

Получаем: MN || АС и КР || АС, отсюда MN || КРВиды четырехугольников с чертежами 8 класс, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Виды четырехугольников с чертежами 8 класс

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Виды четырехугольников с чертежами 8 класс

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Виды четырехугольников с чертежами 8 класс

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Виды четырехугольников с чертежами 8 класс= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Виды четырехугольников с чертежами 8 класс

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Виды четырехугольников с чертежами 8 классno стороне и прилежащим к ней углам. У них CF = FD по условию, Виды четырехугольников с чертежами 8 класскак вертикальные, Виды четырехугольников с чертежами 8 классвнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Виды четырехугольников с чертежами 8 класс

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Виды четырехугольников с чертежами 8 классравнобедренный. Поэтому Виды четырехугольников с чертежами 8 класссоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Виды четырехугольников с чертежами 8 класс

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Виды четырехугольников с чертежами 8 класс

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Виды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 класс

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Виды четырехугольников с чертежами 8 класс— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Виды четырехугольников с чертежами 8 класс

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Виды четырехугольников с чертежами 8 класс. По свойству внешнего угла треугольника, Виды четырехугольников с чертежами 8 классВиды четырехугольников с чертежами 8 класс— равнобедренный (ОВ= OA = R). Поэтому Виды четырехугольников с чертежами 8 классизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Виды четырехугольников с чертежами 8 класс

Из доказанного в первом случае следует, что Виды четырехугольников с чертежами 8 классизмеряется половиной дуги AD, a Виды четырехугольников с чертежами 8 класс— половиной дуги DC. Поэтому Виды четырехугольников с чертежами 8 классизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Виды четырехугольников с чертежами 8 класс

Виды четырехугольников с чертежами 8 класс

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Виды четырехугольников с чертежами 8 класс

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Виды четырехугольников с чертежами 8 класскак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Виды четырехугольников с чертежами 8 класс, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Виды четырехугольников с чертежами 8 класс

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Виды четырехугольников с чертежами 8 класс(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Виды четырехугольников с чертежами 8 класс(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Виды четырехугольников с чертежами 8 класс

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Виды четырехугольников с чертежами 8 класс

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Виды четырехугольников с чертежами 8 класс

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Виды четырехугольников с чертежами 8 класс

Доказать: Виды четырехугольников с чертежами 8 класс

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Виды четырехугольников с чертежами 8 класс

Тогда Виды четырехугольников с чертежами 8 класс

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Виды четырехугольников с чертежами 8 класс

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Виды четырехугольников с чертежами 8 класс

Докажем, что Виды четырехугольников с чертежами 8 класс. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Виды четырехугольников с чертежами 8 класс. По свойству равнобокой трапеции, Виды четырехугольников с чертежами 8 класс

Тогда Виды четырехугольников с чертежами 8 класси, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Виды четырехугольников с чертежами 8 класс

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Виды четырехугольников с чертежами 8 класс

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Виды четырехугольников с чертежами 8 классцентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Виды четырехугольников с чертежами 8 классвписанного в окружность. Действительно,

Виды четырехугольников с чертежами 8 класс

Следовательно, четырёхугольник Виды четырехугольников с чертежами 8 класс— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Виды четырехугольников с чертежами 8 класс

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Виды четырехугольников с чертежами 8 класс

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Четырёхугольник и его элементы – 8 класс геометрияСкачать

Четырёхугольник и его элементы – 8 класс геометрия

Геометрия. Урок 4. Четырехугольники

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Виды четырехугольников с чертежами 8 класс

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Определение четырехугольника
  • Выпуклые четырехугольники
  • Параллелограмм

Видео:Что такое выпуклый четырёхугольник? | Математика 8 класс | Геометрия 8 класс | МегаШколаСкачать

Что такое выпуклый четырёхугольник? | Математика 8 класс  |  Геометрия 8 класс | МегаШкола

Определение четырехугольника

Четырехугольником называется фигура, которая состоит из четырех точек (вершин) и четырех отрезков (сторон), которые последовательно соединяют вершины. При этом никакие три из данных точек не должны лежать на одной прямой, а соединяющие их отрезки не должны пересекаться.

Четырехугольники бывают выпуклые ( A B C D ) и невыпуклые ( A 1 B 1 C 1 D 1 ) .

Виды четырехугольников с чертежами 8 класс

Выпуклые четырехугольники

В задачах ОГЭ встречаются выпуклые четырехугольники, поэтому подробно изучим их.

Смежные стороны – соседние стороны, которые выходят из одной вершины. Пары смежных сторон: A B и A D , A B и B C , B C и C D , C D и A D .

Противолежащие стороны – несмежные стороны (соединяют разные вершины). Пары противолежащих сторон: A B и C D , B C и A D .

Противолежащие вершины – вершины, не являющиеся соседними (лежат друг напротив друга). Пары противолежащих вершин: A и C , B и D .

Диагонали четырехугольника – отрезки, соединяющие противолежащие вершины. A C и B D – диагонали четырехугольника A B C D .

Диагонали выпуклого четырехугольника пересекаются в одной точке.

Площадь произвольного выпуклого четырехугольника можно найти по формуле:

S = 1 2 d 1 d 2 ⋅ sin φ

где d 1 и d 2 – диагонали четырехугольника, φ – угол между диагоналями (острый или тупой – не важно).

Рассмотрим более подробно некоторые виды выпуклых четырехугольников.

Класс параллелограммов : параллелограмм, ромб, прямоугольник, квадрат.

Класс трапеций : произвольная трапеция, прямоугольная трапеция, равнобокая (равнобедренная) трапеция.

Параллелограмм

Параллелограмм – четырехугольник, у которого противолежащие стороны попарно параллельны.

Свойства параллелограмма:

  • Противолежащие стороны равны.
  • Противоположные углы равны.
  • Диагонали точкой пересечения делятся пополам.
  • Сумма углов, прилежащих к одной стороне, равна 180 ° .
  • Сумма квадратов диагоналей равна сумме квадратов сторон. d 1 2 + d 2 2 = 2 ( a 2 + b 2 )

Площадь параллелограмма можно найти по трём формулам.

Как произведение стороны и высоты, проведенной к ней.

Поскольку стороны имеют разные длины, то высоты, которые к ним проведены, тоже будут иметь разные длины.

Как произведение двух смежных (соседних) сторон на синус угла между ними.

Как полупроизведение диагоналей на синус угла между ними.

Ромб – параллелограмм, у которого все стороны равны.

Свойства ромба:

  • Диагонали пересекаются под прямым углом.
  • Диагонали являются биссектрисами углов, из которых выходят.
  • Сохраняются все свойства параллелограмма.

Площадь ромба можно найти по трём формулам.

Как произведение стороны ромба на высоту ромба.

Как квадрат стороны ромба на синус угла между двумя сторонами.

Как полупроизведение диагоналей ромба.

Прямоугольник

Прямоугольник – это параллелограмм, у которого все углы равны 90 ° .

Свойства прямоугольника:

  • Диагонали прямоугольника равны.
  • Сохраняются все свойства параллелограмма.

Площадь прямоугольника можно найти по двум формулам:

Как произведение двух смежных (соседних) сторон прямоугольника.

Как полупроизведение диагоналей (так как они обе равны, обозначим их буквой d ) на синус угла между ними.

Квадрат

Квадрат – прямоугольник, у которого все стороны равны.

Свойства квадрата:

  • Сохраняет свойства ромба.
  • Сохраняет свойства прямоугольника.

Площадь квадрата можно вычислить по двум формулам:

Как квадрат стороны.

Как полупроизведение квадратов диагоналей (диагонали в квадрате равны).

Трапеция

Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие нет.

Стороны, которые параллельны друг другу называются основаниями , другие две стороны называются боковыми сторонами .

B C и A D – основания, A B и C D – боковые стороны трапеции A B C D .

Свойства трапеции:

сумма углов, прилежащих к боковой стороне, равна 180 ° .

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

Средняя линия параллельна основаниям. Её длина находится по формуле: m = a + b 2

Площадь трапеции можно найти по двум формулам:

Как полусумму оснований на высоту. Поскольку полусумма оснований есть средняя линия трапеции, можно найти площадь трапеции как произведение средней линии на высоту.

Как полупроизведение диагоналей на синус угла между ними.

Виды трапеций

Прямоугольная трапеция – трапеция, у которой два угла прямые.

Равнобокая (равнобедренная) трапеция – трапеция, у которой боковые стороны равны.

Свойство равнобокой трапеции: углы при основании равны

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с четырехугольниками

Поделиться или сохранить к себе: