Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Около четырехугольника можно описать окружность

Теорема (свойство вписанного четырёхугольника)

Сумма противолежащих углов вписанного четырёхугольника равна 180°.

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовДано: ABCD вписан в окр. (O; R)

∠A — вписанный угол, опирающийся на дугу BCD.

∠C — вписанный угол, опирающийся на дугу DAB.

Так как вписанный угол равен половине дуги, на которую он опирается, то

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Что и требовалось доказать.

Теорема (признак вписанного четырёхугольника)

Около четырёхугольника можно описать окружность, если сумма его противолежащих углов равна 180°.

Дано: ABCD — четырёхугольник,

Доказать: ABCD можно вписать в окружность

Опишем окружность около треугольника ABC и докажем, что точка D лежит на этой окружности.

Доказательство будем вести методом от противного.

Предположим, что точка D не лежит на описанной около треугольника ABD окружности. Тогда D лежит либо внутри этой окружности, либо вне её.

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовПусть точка D лежит внутри окружности и луч AD пересекает окружность в точке E.

В этом случае четырёхугольник ABCE — вписанный, и сумма его противолежащих углов равна 180°: ∠B+∠E=180°.

По условию, ∠B+∠D=180°. Отсюда следует, что ∠D=∠E.

Но угол D — внешний угол треугольника DCE при вершине D.

Так как внешний угол треугольника равен сумме двух внутренних не смежных с ним углов, то

∠ADC=∠DEC+∠DCE, то есть угол D не может быть равным углу E. Пришли к противоречию. А значит, точка D не может лежать внутри окружности, описанной около треугольника ABC.

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовПредположим, что точка D лежит вне описанной около треугольника ABC окружности.

Луч AD пересекает окружность в точке E.

Тогда ABCE — вписанный четырёхугольник и ∠B+∠E=180°.

По условию, ∠B+∠D=180°. Получаем, что ∠D=∠E.

Но угол E — внешний угол треугольника ECD при вершине E. А значит,

∠AEC=∠EDC+∠DCE, то есть углы D и E не могут быть равными. Противоречие получили потому, что предположили, что точка D лежит вне окружности.

Так как точка D не может лежать внутри либо вне описанной около треугольника ABC окружности, то D лежит на этой окружности. Это значит, что около четырёхугольника ABCD можно описать окружность.

Что и требовалось доказать.

На основании свойства и признака вписанного четырёхугольника сформулируем необходимое и достаточное условие вписанного четырёхугольника.

Теорема (Необходимое и достаточное условие вписанного четырёхугольника)

Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма уго противолежащих углов равна 180°.

Видео:16 задача ОГЭ: четырёхугольник, вписанный в окружность; подобные треугольникиСкачать

16 задача ОГЭ: четырёхугольник, вписанный в окружность; подобные треугольники

Четырехугольники, вписанные в окружность. Теорема Птолемея

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовВписанные четырехугольники и их свойства
Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовТеорема Птолемея

Видео:11 класс, 43 урок, Вписанный четырехугольникСкачать

11 класс, 43 урок, Вписанный четырехугольник

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

ФигураРисунокСвойство
Окружность, описанная около параллелограммаВерно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромбаВерно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапецииВерно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоидаВерно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольникВерно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов
где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.
Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Окружность, описанная около параллелограмма
Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовОкружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовОкружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовОкружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусовОкружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов
Окружность, описанная около параллелограмма
Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромбаВерно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапецииВерно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоидаВерно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольникВерно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Видео:Геометрия Если в четырехугольнике сумма противолежащих углов равна 180, то около него можно описатьСкачать

Геометрия Если в четырехугольнике сумма противолежащих углов равна 180, то около него можно описать

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Докажем, что справедливо равенство:

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

откуда вытекает равенство:

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Видео:Признаки вписанного четырехугольника | Задачи 35-40 | Решение задач | Волчкевич |Уроки геометрии 7-8Скачать

Признаки вписанного четырехугольника | Задачи 35-40 | Решение задач | Волчкевич |Уроки геометрии 7-8

Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противоположных углов равна 180 градусов

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Вписанные углы А и С четырехугольника АВСD на рисунке опираются на дуги ВСD и BAD, сумма которых равна 360 градусов. Значит, сумма углов А и С равна .

Докажем обратное утверждение.

Пусть сумма углов А и С четырехугольника АВСD равна 180°. Докажем, что точки А, В, С и D лежат на одной окружности.

Вокруг любого треугольника можно описать окружность, причем только одну. Опишем окружность вокруг треугольника АВD. Мы не знаем пока, лежит ли точка С на этой окружности. Значит, С может лежать на этой окружности, или внутри нее, или вне окружности.

Предположим, что точка С лежит внутри окружности, описанной вокруг треугольника АВD. Продолжим отрезок ВС до пересечения с окружностью в точке .

Верно ли что в любом вписанном четырехугольнике сумма противоположных углов равна 180 градусов

Так как четырехугольник вписан в окружность, сумма его противоположных углов равна 180°. Это мы доказали. Значит, .

По условию, . Значит

Угол – смежный с углом ВСD, Тогда в треугольнике сумма углов и равна 180°. Такой треугольник не может существовать, поскольку угол D в нем равен нулю. Значит, точка С не может лежать внутри окружности, описанной вокруг треугольника ABD.

Аналогично доказывается, что С не может лежать и вне этой окружности. Остается случай, когда точки А, В, С и D лежат на одной окружности.

И это значит, что ABCD вписан в окружность.

Задачи ЕГЭ по теме «Вписанный четырехугольник»

1. Угол A четырехугольника ABCD, вписанного в окружность, равен . Найдите угол C этого четырехугольника. Ответ дайте в градусах.

Сумма противоположных углов четырехугольника, вписанного в окружность, равна . Величина угла С равна

2. Два угла вписанного в окружность четырёхугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.

Сумма противоположных углов четырехугольника, вписанного в окружность, равна . Больший из оставшихся углов лежит напротив меньшего из указанных в условии, и он равен .

💥 Видео

Геометрия 11 класс. Вписанный четырехугольникСкачать

Геометрия 11 класс. Вписанный четырехугольник

Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

3 правила для вписанного четырехугольника #shortsСкачать

3 правила для вписанного четырехугольника #shorts

Вписанный в окружность четырёхугольник.Скачать

Вписанный в окружность четырёхугольник.

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.Скачать

Окружность №16 из ОГЭ. Вписанные и описанные многоугольники. Квадрат и окружность.

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис ТрушинСкачать

Вписанный четырёхугольник | ЕГЭ-2018. Задание 16. Математика. Профильный уровень | Борис Трушин

Четырехугольники, вписанные в окружность. 9 класс.Скачать

Четырехугольники, вписанные в окружность. 9 класс.

Признаки вписанного четырехугольника | Задачи 21-27 | Решение задач | Волчкевич |Уроки геометрии 7-8Скачать

Признаки вписанного четырехугольника | Задачи 21-27 | Решение задач | Волчкевич |Уроки геометрии 7-8

Геометрия 8 класс (Урок№33 - Описанная окружность.)Скачать

Геометрия 8 класс (Урок№33 - Описанная окружность.)

Признаки вписанного четырехугольника | Задачи 11-20 | Решение задач | Волчкевич |Уроки геометрии 7-8Скачать

Признаки вписанного четырехугольника | Задачи 11-20 | Решение задач | Волчкевич |Уроки геометрии 7-8

Вписанная и описанная окружность - от bezbotvyСкачать

Вписанная и описанная окружность - от bezbotvy

Признаки вписанного четырехугольника | Задачи 1-10 | Решение задач | Волчкевич | Уроки геометрии 7-8Скачать

Признаки вписанного четырехугольника | Задачи 1-10 | Решение задач | Волчкевич | Уроки геометрии 7-8

окружности огэ по математике 2023 / маттаймСкачать

окружности огэ по математике 2023 / маттайм

#58. Олимпиадная задача о четырехугольникеСкачать

#58. Олимпиадная задача о четырехугольнике

ЕГЭ 2024 по математике. №1,17 Медиана, биссектриса, высота, серединный перпендикулярСкачать

ЕГЭ 2024 по математике. №1,17 Медиана, биссектриса, высота, серединный перпендикуляр

16 задание ОГЭ по математике #shorts #огэматематикаСкачать

16 задание ОГЭ по математике #shorts #огэматематика
Поделиться или сохранить к себе: