Векторы в mathcad prime

Векторы и матрицы в MathCAD

Нижняя граница индексации в MathCAD определена системной переменной ORIGIN. По умолчанию ORIGIN=0. Значение переменной можно переопределить. Например, ORIGIN=1.

Векторы и матрицы в MathCAD можно задавать путем ввода их элементов. Для ввода индекса элемента массива используется символ – [.

Поэлементный ввод массива Х

Вводимые символыОтображаемые символы
X [ 1 Shift+: 5X1:=5
X [ 2 Shift+: 8X2:= 8
X [ 3 Shift+: 10X3:= 10

Поэлементный ввод матрицы А

Вводимые символыОтображаемые символы
A [ 1,1 Shift+: 0.1A11 := 0.1
A [ 1,2 Shift+: -2.5A12 := -2.5
A [ 2,1 Shift+: -1.0A21 := -1.0
A [ 2,2 Shift+: 5.2A22 := 5.2

Векторы в mathcad prime

Для операций с матрицами и векторами предназначена панель Matrix, которая открывается щелчком по кнопке Векторы в mathcad primeв панели математических инструментов.

Векторы в mathcad prime

ПанельMatrix содержит следующие кнопки:

Векторы в mathcad prime– определение размеров матрицы;

Векторы в mathcad prime– ввод элемента массива Векторы в mathcad prime;

Векторы в mathcad prime– вычисление матрицы, обратной к данной Векторы в mathcad prime;

Векторы в mathcad prime– вычисление определителя матрицы Векторы в mathcad prime;

Векторы в mathcad prime– оператор векторизации (поэлементные операции с векторами и матрицами) Векторы в mathcad prime;

Векторы в mathcad prime– определение столбца матрицы Векторы в mathcad prime;

Векторы в mathcad prime– транспонирование матрицы Векторы в mathcad prime;

Векторы в mathcad prime– определение ранжированной переменной;

Векторы в mathcad prime– вычисление скалярного произведения векторов;

Векторы в mathcad prime– вычисление векторного произведения векторов;

Векторы в mathcad prime– вычисление суммы компонент вектора.

Векторы в mathcad prime– визуализация цифровой информации.

Действия, которые необходимо выполнить, чтобы ввести матрицу в рабочий документ при помощи кнопки Векторы в mathcad primeпанели Matrix:

1. Ввести с клавиатуры имя матрицы и знак присваивания;

2. Щелчком по кнопке Векторы в mathcad primeоткрыть окно диалога:

Векторы в mathcad prime

3. Определить число строк (Rows) и число столбцов (Columns) будущей матрицы;

4. Закрыть окно диалога, щелкнув по кнопке OK;

5. Ввести элементы матрицы, установив курсор в поле ввода, которое появится справа от знака присваивания:

Векторы в mathcad prime

Векторы в mathcad prime

Векторы в mathcad prime

Векторы в mathcad prime

Функции определения матриц и операции с блоками матриц:

matrix(m,n,f) – создает и заполняет матрицу A=<aij> размерности m на n, каждый элемент которой aij равен значению функции f(i,j);

diag(v) – создает диагональную матрицу, элементы главной диагонали которой хранятся в векторе v;

identity(n) – создает единичную матрицу порядка n;

augment(A,B) – из матриц А и В формируется третья матрица, первые столбцыкоторой содержат матрицу А, а последние — матрицу В (матрицы А и В должны иметь одинаковое число строк);

stack(A,B) – из матриц А и В формируется третья матрица, первые строкикоторой содержат матрицу А, а последние — матрицу В (матрицы А и В должны иметь одинаковое число столбцов);

submatrix(A,l,k,p,r) – формирует матрицу, которая является блоком матрицы А, расположенным в строках с l по k и в столбцах с p по r (l

Re(A) – возвращает матрицу (вектор) действительных частей матрицы (вектора) А с комплексными элементами;

Im(A) – возвращает матрицу (вектор) мнимых частей матрицы (вектора) А с комплексными элементами;

Функции вычисления различных числовых характеристик матриц:

last(v) – вычисление номера последнего элемента вектора v;

length(v) – вычисление количества элементов вектора v;

rows(A) – вычисление числа строк в матрице А;

cols(A) – вычисление числа столбцов в матрице А;

max(A) – вычисление наибольшего элемента в матрице (векторе) А;

min(A) – вычисление наименьшего элемента в матрице (векторе) А;

mean(A) – вычисление среднего значения матрицы (вектора) А;

tr(A) – вычисление следа (суммы диагональных элементов) квадратной матрицы А;

ranc(A) – вычисление ранга матрицы А;

Функции, реализующие численные алгоритмы:

rref(A) – приведение матрицы А к ступенчатому виду;

geninv(A) – вычисляет матрицу, левую обратную к матрице А, L∙A=E, где Е – единичная матрица размером n×n, L – прямоугольная матрица размером n×m, А – прямоугольная матрица размером m×n;

lsolve(A,b) – решение системы линейных алгебраических уравнений A∙x=b.

lu(A) – выполняет треугольное разложение матрицы А: A=С∙L∙U, где L и U – соответственно нижняя и верхняя треугольные матрицы, все четыре матрицы квадратные и одного порядка;

qr(A) – выполняет разложение матрицы А: A=Q∙R, где Q – ортогональная матрица, а R – верхняя треугольная матрицы;

cholesky(A) – выполняет разложение матрицы А по схеме Холецкого: А=L∙L T , где А — квадратная, симметричная, положительно определенная матрица, L – треугольная матрица;

sort(v) – сортировка элементов вектора v в порядке возрастания их значений;

reverse(v) – перестановка элементов вектора v в обратном порядке;

csort(A,n) – перестановка строк матрицы А таким образом, чтобы отсортированным оказался n-й столбец;

rsort(A,n) – перестановка столбцов матрицы А таким образом, чтобы отсортированной оказалась n-я строка.

ЗАДАЧА 1. Сформировать матрицу H из элементов матрицы D, исключив третий столбец и вторую строку.

Векторы в mathcad prime

ЗАДАЧА 2. Сформировать матрицу H следующим образом. Первая и последняя строки равны строкам матрицы D, остальные совпадают с матрицей C.

Векторы в mathcad prime

ЗАДАЧА 3. Сформировать матрицу таким образом, чтобы элементы на главной диагонали были равны 1, выше главной диагонали – 2, а ниже – 3.

Векторы в mathcad prime

ЗАДАЧА 4. Элементы матрицы формируются по формуле Векторы в mathcad prime. Сформировать вектор из максимальных элементов столбцов матрицы А. Найти сумму элементов матрицы, расположенных в четных строках.

Векторы в mathcad prime

ЗАДАЧА 5. Выполнить действия над матрицами А, В, С:

Векторы в mathcad prime

ЗАДАЧА 6. Решить систему линейных уравнений при помощи правила Крамера:

Для решения поставленной задачи необходимо выполнить следующие действия:

1. Сформировать матрицу системы А и вектор правых частей b.

2. Вычислить главный определитель .

3. Сформировать вспомогательные матрицы (удобно скопировать матрицу А несколько раз и последовательно заменять в ней столбцы на вектор b) для вычисления определителей i;

4. Вычислить определители i;

5. Найти решение системы по формуле xi=∆i/∆.

Векторы в mathcad prime

Векторы в mathcad prime

ЗАДАЧА 7. Решить систему линейных уравнений методом обратной матрицы.

1. Сформировать матрицу коэффициентов и вектор свободных членов системы.

2. Решить систему, представив вектор неизвестных как произведение матрицы, обратной к матрице системы и вектора свободных членов.

Векторы в mathcad prime

ЗАДАЧА 8. Решить систему линейных уравнений методом Гаусса.

Порядок решения задачи:

1. Сформировать матрицу коэффициентов и вектор свободных членов заданной системы.

2. Сформировать расширенную матрицу системы при помощи функции augment(A,b);

3. Используя функцию rref(A), привести расширенную матрицу к ступенчатому виду.

4. Получить решение системы, выделив последний столбец матрицы, полученной в предыдущем пункте.

5. Выполнить проверку Ax-B=0.

Векторы в mathcad prime

ЗАДАЧА 9. Решить систему при помощи функции lsolve:

Векторы в mathcad prime

Векторы в mathcad prime

Пример системы, которая не имеет решений:

Векторы в mathcad prime

Векторы в mathcad prime

Пример системы, которая имеет бесконечное множество решений

Векторы в mathcad prime Векторы в mathcad primeВекторы в mathcad prime

ЗАДАЧА 10. Решить систему при помощи решающего блока.

Решающий блок начинается с ключевого слова Given (Дано), которое необходимо ввести с клавиатуры.

Правее и ниже ключевого слова записываются уравнения системы.

Знак равенства в уравнениях вводится при помощи клавиш Ctrl+= или выбирается на панели инструментов Boolean.

Правее и ниже последнего уравнения системы вводится функция Find(x1,x2,…xn) (Найти), в скобках перечисляются имена переменных, значения которых нужно найти.

Численное решение системы можно получить, поставив знак равенства после функции Find(x1,x2,…xn).

Символьное решение получится, если после функции Find(x1,x2,…xn) указать знак стрелки, который находится в панели инструментов Symbolic (Ctrl+.).

Видео:Основные действия с матрицами и векторами в MathCAD 14 (20/34)Скачать

Основные действия с матрицами и векторами в MathCAD 14 (20/34)

Векторы и матрицы в MathСad

Вы уже наверняка не раз сталкивались с такими понятиями как векторы и матрицы. Вектор – это обыкновенный столбец с числами. Матрица представляет собой сборный блок с объектами. Именно на работе с этими элементами построен принцип функционирования программы Excel. В этом уроке мы расскажем о том, как работать с такими вычислениями в программе Маткад и акцентируем внимание на том, почему процесс работы в данном ПО куда проще и удобнее.

Мы уже рассказывали в своих уроках о том, что все наши векторы начинались с элемента с нулевым значением. Сейчас же мы поставим номером первого элемента цифру один, ведь так нам гораздо проще будет сориентироваться в учебном материале.

Векторы в mathcad prime

Данное значение можно внести прямо в рабочее поле.

Векторы в mathcad prime

Посмотрите на матрицы на рисунке ниже.

Векторы в mathcad prime

Как вы можете заметить, в них входят и числа, и функции. Помимо этого, сюда можно внести и текст. Чтобы вывести элемент матрицы, воспользуйтесь подстрочным индексом.

Векторы в mathcad prime

Матрицы, описанные на скрине повыше, относятся к квадратному типу. Тем не менее, пользователь может самостоятельно устанавливать их размерные рамки.

Векторы в mathcad prime

Примите во внимание, что первое число обозначает общую нумерацию строчки, а второе – номер столбика.

Векторы в mathcad prime

Для векторного столбца второй индекс можно удалить. Для строки же он является обязательным.

Векторы в mathcad prime

Нужные команды, для всевозможного выделения строчек или столбиков вы всегда сможете отыскать во вкладке «Математика».

Векторы в mathcad prime

Векторы в mathcad prime

Большинство операций для векторных и матричных конструкций вполне соответствуют работе со стандартными числами и функциями. Для того, чтобы отыскать обратную матрицу, потребуется действовать по аналогии с операциями деления. Пользователь может записать операторы, задав им наименования матриц и векторов. Например, это может выглядеть так:

Векторы в mathcad prime

Более подробно мы рассмотрим данный опционал немного погодя. Стоит отметить, что такая функция нуждается в девяти операциях умножения и в таком же количестве деления. Согласитесь, что расписывать все эти процессы достаточно скучно. К тому же, с большими матрицами такой подход нерациональный.

Методика применения векторов отличается значительным разнообразием. Чтобы разработать вектор или матрицу, понадобится открыть вкладку «Вставить матрицу». На экране появится сетка с изображением маленьких квадратиков.

Векторы в mathcad prime

Перемещаем указатель на эту сетку. Настраиваем курсор на нужные габариты матрицы. Кликаем дважды ЛКМ.

На экране появляется новая матрица.

Векторы в mathcad prime

Матрица может быть переименована, после того, как пользователь дважды кликнет по левой скобке.

Векторы в mathcad prime

Чтобы быстро вставить или удалить строчки да столбцы, можно вызвать контекстное меню «Операторы с векторамиматрицами» на одноименной вкладке.

Векторы в mathcad prime

Работа с матрицами

Эффекты от матриц или вектором гораздо проще сообразить, пользуясь специально разработанными символами. Обратите внимание на скрин ниже.

Векторы в mathcad prime

Оператор транспортировки вызывается посредством выполнения операции Математика –> Операторы –> Векторы и матрицы:

Векторы в mathcad prime

Кликаем по правой стороне матрицы и применяем оператор. Он подходит как для символьных, так и численных матриц.

Векторы в mathcad prime

Операции в векторах часто выполняются по одному элементу. В этой ситуации можно воспользоваться очень удобным оператором, который отвечает за разработку вектора. Чтобы перемножить два вектора, понадобится выполнить простой пример.

Векторы в mathcad prime

Теперь нам нужно выбрать нужные параметры и активировать векторизацию.

Векторы в mathcad prime

Вычисляем заданные параметры и смотрим на результат. Первый элемент приумножился на второй, и так далее.

Векторы в mathcad prime

Еще примеры таких опций.

Векторы в mathcad prime

Операции поэлементного типа могут применяться исключительно к массивам одинакового размера.

Добавление и вычитание

Данные операции относятся к поэлементному типу.

Векторы в mathcad prime

Она также применяется к массивам одинакового размерного типа.

Пользуясь оператором, предназначенным для суммирования, можно отыскать сумму всех векторных частей.

Векторы в mathcad prime

Скалярное произведение работает по представленному ниже принципу.

Векторы в mathcad prime

При таком типе умножения матриц, программа занимается умножением данных элементов по столбцам. Данная операция может применяться исключительно к тем матрицам, которые характеризуются равным количеством строчек и столбцов.

Векторы в mathcad prime

Обратите внимание, что немалая роль отводится поочередности множителей.

Векторы в mathcad prime

Только в редких случаях скалярное произведение может стать коммутативным.

Векторы в mathcad prime

Скаляр двух векторов показывает результат как на фотографии ниже.

Векторы в mathcad prime

Данная опция может использоваться исключительно для двух векторных столбов из трех элементов.

Векторы в mathcad prime

Векторное произведение часто используется для механики, гидродинамики и огромного количества подобных сфер деятельности.

Обратная матрица может быть применима для квадратных матриц:

Векторы в mathcad prime

В результате у нас получится матрица единичного типа

Векторы в mathcad prime

Если произвести матрицу и единичную матрицу, мы получим первоначальный вариант.

Векторы в mathcad prime

Векторы в mathcad prime

Определитель может быть разработан исключительно для матрицы квадратного типа. Он может быть нулевым в любых условиях. Обратная матрица имеет в своей структуре дроби, в состав которых входит определитель.

Векторы в mathcad prime

В ситуациях, когда определитель установлен на ноль, к нему нереально подобрать обратную матрицу. Сама матрица автоматически становится сингулярной. О таких изменениях пользователь узнает из оповещения программы.

Векторы в mathcad prime

В ситуациях со скалярами, определитель соответствует их модулям

Векторы в mathcad prime

Команда «определитель» помогает отыскать длину вектора .

Векторы в mathcad prime

Уважаемые пользователи, хотим Вас проинформировать о том, что некоторые антивирусные программы и браузеры ложно срабатывают на дистрибутив программы MediaGet, считая его зараженным. Данный софт не содержит никаких вредоносных программ и вирусов и многие из антивирусов просто Вас предупреждают, что это загрузчик (Downloader). Если хотите избежать подобных проблем, просто добавьте MediaGet в список доверенных программ Вашей антивирусной программы или браузера.

Векторы в mathcad prime

Выбрав нужную версию программы и кликнув ссылку, Вам на компьютер скачивается дистрибутив приложения MediaGet, который будет находиться в папке «Загрузки» для Вашего браузера. Находим этот файл с именем программы и запускаем его. И видим первый этап установки. Нажимаем унопку «Далее»

Векторы в mathcad prime

Далее Вам предлагается прочитать и одобрить лицензионное соглашение. Нажимаем кнопку «Принимаю»

Векторы в mathcad prime

В следующем окне Вам предлагается бесплатное полезное дополнительное программоное обеспечение, будь то антивирус или бразуер. Нажимаем кнопку «Принимаю». Также Вы можете отказаться от установки дополнительного ПО, нажав кнопку «Отклоняю»

Векторы в mathcad prime

Далее происходит процесс установки программы. Вам нужно выбрать папку, в которую будут скачиваться нужные Вам файлы.

Векторы в mathcad prime

Происходит завершение установки. Программа автоматически открывается и скачивает нужные Вам исходные файлы.

Обратите внимание, что предоставляемое программное обеспечение выкладывается исключительно для личного использования и ознакомления. Все файлы, доступные для скачивания, не содержат вирусов и вредоносных программ.

Видео:7. MathCad. Векторы и матрицыСкачать

7. MathCad. Векторы и матрицы

Векторы в mathcad prime

Mathcad содержит функции для обычных в линейной алгебре действий с массивами. Эти функции предназначены для использования с векторами и матрицами. Если явно не указано, что функция определена для векторного или матричного аргумента, не следует в ней использовать массивы как аргумент. Обратите внимание, что операторы, которые ожидают в качестве аргумента вектор, всегда ожидают вектор-столбец, а не вектор-строку. Чтобы заменить вектор-строку на вектор-столбец, используйте оператор транспонирования [Ctrl]1.

Если Вы используете Mathcad PLUS, Вы будете также иметь несколько дополнительных функций, определенных для векторов. Эти функции скорее предназначены для анализа данных, чем для действий с матрицами. Они обсуждены в Главе “Встроенные функции”.

Следующие таблицы перечисляют векторные и матричные функции Mathcad. В этих таблицах

  • A и B — массивы (векторы или матрицы).
  • v — вектор.
  • M и N — квадратные матрицы.
  • z — скалярное выражение.
  • Имена, начинающиеся с букв m, n, i или j — целые числа.

Размеры и диапазон значений массива

В Mathcad есть несколько функций, которые возвращают информацию относительно размеров массива и диапазона его элементов. Рисунок 10 показывает, как эти функции используются.

Имя функцииВозвращается.
rows(A)Число строк в массиве A. Если А — скаляр, возвращается 0.
cols(A)Число столбцов в массиве A. Если A скаляр, возвращается 0.
length(v)Число элементов в векторе v.
last(v)Индекс последнего элемента в векторе v.
max(A)Самый большой элемент в массиве A. Если A имеет комплексные элементы, возвращает наибольшую вещественную часть плюс i, умноженную на наибольшую мнимую часть.
min(A)Самый маленький элемент в массиве A. Если A имеет комплексные элементы, возвращает наименьшую вещественную часть плюс i, умноженную на наименьшую мнимую часть.

Векторы в mathcad prime

Рисунок 10: Векторные и матричные функции для нахождения размера массива и получения информации относительно диапазона элементов.

Специальные типы матриц

Можно использовать следующие функции, чтобы произвести от массива или скаляра матрицу специального типа или формы. Функции rref, diag и geninv доступны только в Mathcad PLUS.

Имя функцииВозвращается.
identity(n)n x n единичная матрица (матрица, все диагональные элементы которой равны 1, а все остальные элементы равны 0).
Re(A)Массив, состоящий из элементов, которые являются вещественными частями элементов A.
Im(A)Массив, состоящий из элементов, которые являются мнимыми частями элементов A.
Е diag(v)Диагональная матрица, содержащая на диагонали элементы v.
Е geninv(A)Левая обратная к A матрица L такая, что LВекторы в mathcad primeA = I, где I — единичная матрица, имеющая то же самое число столбцов, что и A. Матрица А — m x n вещественная матрица, где m>=n.
Е rref(A)Ступенчатая форма матрицы A.

Векторы в mathcad prime

Рисунок 11: Функции для преобразования массивов. Обратите внимание, что функции diag и rref являются доступными только в Mathcad PLUS.

Специальные характеристики матрицы

Можно использовать функции из следующей таблицы, чтобы найти след, ранг, нормы и числа обусловленности матрицы. Кроме tr, все эти функции доступны только в Mathcad PLUS.

Имя функцииВозвращается.
tr(M)Сумма диагональных элементов, называемая следом M.
Е rank(A)Ранг вещественной матрицы A.
Е norm1(M)L1 норма матрицы M.
Е norm2(M)L2 норма матрицы M.
Е norme(M)Евклидова норма матрицы M.
Е normi(M)Равномерная норма матрицы M.
Е cond1(M)Число обусловленности матрицы M, основанное на L1 норме.
Е cond2(M)Число обусловленности матрицы M, основанное на L2 норме.
Е conde(M)Число обусловленности матрицы M, основанное на евклидовой норме.
Е condi (M)Число обусловленности матрицы M, основанное на равномерной норме.

Формирование новых матриц из существующих

В Mathcad есть две функции для объединения матриц вместе — бок о бок, или одна над другой. В Mathcad также есть функция для извлечения подматрицы. Рисунки 12 и 13 показывают некоторые примеры.

Имя функцииВозвращается.
augment (A, B)Массив, сформированный расположением A и B бок о бок. Массивы A и B должны иметь одинаковое число строк.
stack (A, B)Массив, сформированный расположением A над B. Массивы A и B должны иметь одинаковое число столбцов.
submatrix (A, ir, jr, ic, jc)Субматрица, состоящая из всех элементов, содержащихся в строках с ir по jc и столбцах с ic по jc. Чтобы поддерживать порядок строк и-или столбцов, удостоверьтесь, что ir

Векторы в mathcad prime

Рисунок 12: Объединение матриц функциями stack и augment.

Векторы в mathcad prime

Рисунок 13: Извлечение субматрицы из матрицы при помощи функции submatrix.

Собственные значения и собственные векторы

В Mathcad существуют функции eigenval и eigenvec для нахождения собственных значений и собственных векторов матрицы. В Mathcad PLUS также есть функция eigenvecs для получения всех собственных векторов сразу. Если Вы используете Mathcad PLUS, Вы будете также иметь доступ к genvals и genvecs для нахождения обобщенных собственных значений и собственных векторов. Рисунок 14 показывает, как некоторые из этих функций используются.

Возвращается.

Имя функции
eigenvals (M)Вектор, содержащий собственные значения матрицы M.
eigenvec (M, z)Матрица, содержащая нормированный собственный вектор, соответствующий собственному значению z квадратной матрицы M.
Е eigenvecs (M)Матрица, содержащая нормированные собственные векторы, соответствующие собственным значениям квадратной матрицы M. n-ный столбец возвращенной матрицы — собственный вектор, соответствующий n-ному собственному значению, возвращенному eigenvals.
Е genvals (M,N)Вектор v собственных значений, каждое из которых удовлетворяет обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера. Вектор x — соответствующий собственный вектор.
Е genvecs (M,N)Матрица, содержащая нормализованные собственные векторы, соответствующие собственным значениям в v, векторе, возвращенном genvals. n-ный столбец этой матрицы — собственный вектор x, удовлетворяющий обобщенной задаче о собственных значениях . Матрицы M и N — вещественнозначные квадратные матрицы одного размера.

Векторы в mathcad prime

Рисунок 14: Нахождение собственных значений и собственных векторов.

Векторы в mathcad prime

Рисунок 15: Использование eigenvecs для одновременного нахождения всех собственных векторов.

Если Вы используете Mathcad PLUS, Вы будете иметь доступ к некоторым дополнительным функциям для выполнения специальных разложений матрицы: QR, LU, Холесского, и по сингулярным базисам. Некоторые из этих функций возвращают две или три матрицы, соединенные вместе в одну большую матрицу. Используйте submatrix, чтобы извлечь эти две или три меньшие матрицы. Рисунок 16 показывает пример.

Имя функцииВозвращается.
Е cholesky(M)Нижняя треугольная матрица L такая, что LВекторы в mathcad primeL T =M. Матрица M должна быть симметричной положительно определенной. Симметрия означает, что M=M T , положительная определённость — что x T Векторы в mathcad primeMВекторы в mathcad primex>0 для любого вектора x Векторы в mathcad prime0.
Е qr(A)Матрица, чьи первые n столбцов содержат ортогональную матрицу Q, а последующие столбцы содержат верхнюю треугольную матрицу R. Матрицы Q и R удовлетворяют равенству A=QВекторы в mathcad primeR. Матрица A должна быть вещественной.
Е lu(M)Матрица, которая содержит три квадратные матрицы P, L и U, расположенные последовательно в указанном порядке и имеющие с M одинаковый размер. L и U являются соответственно нижней и верхней треугольными матрицами. Эти три матрицы удовлетворяют равенству PВекторы в mathcad primeM=LВекторы в mathcad primeU .
Е svd(A)Матрица, содержащая две расположенные друг над другом матрицы U и V. Сверху находится U — размера m x n, снизу V — размера n x n. Матрицы U и V удовлетворяют равенству A=UВекторы в mathcad primediag(s)Векторы в mathcad primeV T , где s — вектор, возвращенный svds(A). A должна быть вещественнозначной матрицей размера m x n, где m>=n.
Е svds(A)Вектор, содержащий сингулярные значения вещественнозначной матрицы размера m x n, где m>=n.

Векторы в mathcad prime

Рисунок 16: Использование функции submatrix для извлечения результата из функции rq. Используйте submatrix, чтобы извлечь подобным образом результаты из функций lu и svd. Обратите внимание, что эти функции доступны только в Mathcad PLUS.

Решение линейной системы уравнений

Если Вы используете Mathcad PLUS, Вы сможете использовать функцию lsolve для решения линейной системы уравнений. Рисунок 17 показывает пример. Обратите внимание, что M не может быть ни вырожденной, ни почти вырожденной для использования с lsolve. Матрица называется вырожденной, если её детерминант равен нулю. Матрица почти вырождена, если у неё большое число обусловленности. Можно использовать одну из функций, описанных на странице 204, чтобы найти число обусловленности матрицы.

Возвращается.

Имя функции
Е lsolve (M, v)Вектор решения x такой, что MВекторы в mathcad primex=v.

Если Вы не используете Mathcad PLUS, Вы всё-таки можете решать систему линейных уравнений, используя обращение матрицы, как показано в нижнем правом углу Рисунка 9.

Векторы в mathcad prime

Рисунок 17: Использование lsolve для решения системы из двух уравнений с двумя неизвестными.

Исправляем ошибки: Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter

🌟 Видео

Mathcad Prime. Урок 12 - Программирование в MathcadСкачать

Mathcad Prime. Урок 12 - Программирование в Mathcad

Олегу Тинькову запрещён вход на Мехмат МГУСкачать

Олегу Тинькову запрещён вход на Мехмат МГУ

ВекторыСкачать

Векторы

Векторы и матрицыСкачать

Векторы и матрицы

Функции для работы с матрицами и векторами в MathCAD 14 (21/34)Скачать

Функции для работы с матрицами и векторами в MathCAD 14 (21/34)

Mathcad Prime. Урок 2 - Построение графиковСкачать

Mathcad Prime. Урок 2 - Построение графиков

Матрицы и векторыСкачать

Матрицы и векторы

Mathcad Prime 5.0Скачать

Mathcad Prime 5.0

Матрицы. Скалярное и векторное произведение векторов в Mathcad, матричные функции(Урок 3.3)Скачать

Матрицы. Скалярное и векторное произведение векторов в Mathcad, матричные функции(Урок 3.3)

Математика это не ИсламСкачать

Математика это не Ислам

Mathcad Prime. Урок 7 - Статистические функции MathcadСкачать

Mathcad Prime. Урок 7 - Статистические функции Mathcad

Собственные векторы и собственные значения матрицыСкачать

Собственные векторы и собственные значения матрицы

PTC Mathcad Prime Tutorial - Variables (Russian Subtitles)Скачать

PTC Mathcad Prime Tutorial - Variables (Russian Subtitles)

Mathcad Prime. Урок 9 - Аппроксимация и сглаживание данных в Mathcad PrimeСкачать

Mathcad Prime. Урок 9 - Аппроксимация и сглаживание данных в Mathcad Prime

Работа с MathCad Prime. Построение графиков.Скачать

Работа с MathCad Prime. Построение графиков.

Матрицы в Mathcad(создание и редактирование матриц)(Урок 3.1)Скачать

Матрицы в Mathcad(создание и редактирование матриц)(Урок 3.1)
Поделиться или сохранить к себе: