Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Параллельность прямых

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

О чем эта статья:

10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущейСкачать

7 класс, 29 урок, Теоремы об углах, образованных двумя параллельными прямыми и секущей

Определение параллельности прямых

Начнем с главного — определимся, какие прямые параллельны согласно евклидовой геометрии. Мы недаром упомянули Евклида, ведь именно в его трудах, написанных за 300 лет до н. э., до нас дошли первые упоминания о параллельности.

Параллельными называются прямые в одной плоскости, не имеющие точек пересечения, даже если их продолжать бесконечно долго. Обозначаются они следующим образом: a II b.

Казалось бы, здесь все просто, но со времен Евклида над определением параллельных прямых и признаками параллельности прямых бились лучшие умы. Особый интерес вызывал 5-й постулат древнегреческого математика: через точку, которая не относится к прямой, в той же плоскости можно провести только одну прямую, параллельную первой. В XIX веке российский математик Н. Лобачевский смог опровергнуть постулат и указать на условия, при которых возможно провести как минимум 2 параллельные прямые через одну точку.

Впрочем, поскольку школьная программа ограничена евклидовой геометрией, вышеуказанное утверждение мы принимаем как аксиому.

На плоскости через любую точку, не принадлежащую некой прямой, можно провести единственную прямую, которая была бы ей параллельна.

Курсы по математике в онлайн-школе Skysmart помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.

Видео:Параллельные прямые | Математика | TutorOnlineСкачать

Параллельные прямые | Математика | TutorOnline

Свойства и признаки параллельных прямых

Есть ряд признаков, по которым можно определить, что одна прямая параллельна другой. К счастью, свойства и признаки параллельности прямых тесно связаны, поэтому не придется запоминать много информации.

Начнем со свойств. Для этого проведем третью прямую, пересекающую параллельные прямые — она будет называться секущей. В результате у нас образуется 8 углов.

Если секущая проходит через две параллельные прямые, то:

    два внутренних односторонних угла образуют в сумме 180°:

∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов
два внутренних накрест лежащих угла равны между собой:

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов
два соответственных угла равны между собой:

∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Если секущая образует перпендикуляр с одной из параллельных прямых, то она будет перпендикулярна и другой.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Вышеуказанные свойства являются одновременно признаками, по которым мы можем сделать вывод о параллельности прямых. Причем достаточно установить и доказать лишь один признак — остальные будут к нему прилагаться.

А сейчас посмотрим, как все это помогает решать задачи и практиковаться в определении параллельности двух прямых.

Задача 1

Прямые MN и KP пересекают две другие прямые, образуя несколько углов. Известно, что ∠1 = 73°; ∠3 = 92°; ∠2 = 73°. Требуется найти величину ∠4.

Решение

Поскольку ∠1 и ∠2 являются соответственными, их равенство говорит о том, что MN II KP. Следовательно, ∠3 = ∠MPK = 92°.

Согласно другому свойству параллельных прямых ∠4 + ∠MPK = 180°.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Задача 2

Две параллельные прямые а и b удалены друг от друга на расстояние 27 см. Секущая к этим прямым образует с одной из них угол в 150°. Требуется найти величину отрезка секущей, расположенного между а и b.

Решение

Поскольку а II b, значит ∠MKD + ∠KDN = 180°.

Соответственно, ∠MKD = 180° — ∠KDN = 180° — 150° = 30°.

Теперь рассмотрим треугольник KDM. Мы знаем, что отрезок DM представляет собой расстояние между прямыми а и b, а значит, DM ┴ b и наш треугольник является прямоугольным.

Поскольку катет, противолежащий углу в 30°, равен ½ гипотенузы, DM = 1/2DK.

Видео:№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°Скачать

№208. Разность двух односторонних углов при пересечении двух параллельных прямых секущей равна 50°

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

305. Параллельны ли изображённые на рисунке 212 прямые a и b , если:

3) ∠ 4 = 125°, ∠ 6 = 55°;

4) ∠ 2 = 35°, ∠ 5 = 146°;

5) ∠ 1 = 98°, ∠ 6 = 82°;

6) ∠ 1 = 143°, ∠ 7 = 37°?

306. На каких из рисунков 213, а – г прямые m и n параллельны?

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

307. На рисунке 214 укажите все пары параллельных прямых.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

308. На рисунке 215 укажите параллельные прямые, если ∠ 1 = 53°, ∠ 2 = 128°, ∠ 3 = 127°.

309. На рисунке 216 AB = BC , CD = DK . Докажите, что AB ‖ DK .

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

310. На рисунке 217 AK — биссектриса угла BAC , AM = MK . Докажите, что MK ‖ AC .

311. На рисунке 218 ∠ ACB = ∠ ACD , AD = CD . Докажите, что BC ‖ AD .

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

312. В треугольнике ABC известно, что AB = BC , ∠ A = 60°, ∠ BCD — смежный с ∠ ACB , CM — биссектриса угла BCD . Докажите, что AB ‖ CM .

313. Отрезки AB и CD пересекаются в точке O и делятся этой точкой пополам. Докажите, что AC ‖ BD .

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

314. На рисунке 219 AB = CD , BC = AD . Докажите, что AB ‖ CD .

315. Известно, что некоторая прямая m пересекает прямую a (рис. 220). Пересекает ли прямая m прямую b ?

316. Каково взаимное расположение прямых CD и EF на рисунке 221?

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

317. Угол ABC равен 60°, а угол BCD — 120°. Можно ли утверждать, что прямые AB и CD параллельны?

318. Угол между прямыми a и c равен углу между прямыми b и c . Можно ли утверждать, что прямые a и b параллельны?

319. Четыре угла, образованные при пересечении прямых a и b прямой c , равны по 40°, а любой из остальных четырёх углов — 140°. Можно ли утверждать, что прямые a и b параллельны?

320. Прямая пересекает биссектрису BM треугольника ABC в точке O , являющейся серединой отрезка BM , а сторону BC — в точке K . Докажите, что если OK ⊥ BM , то MK ‖ AB .

321. Отрезки AM и CK — медианы треугольника ABC . На продолжении отрезка AM за точку M отложен отрезок MF , а на продолжении отрезка CK за точку K — отрезок KD так, что MF = AM , KD = CK . Докажите, что точки B , D и F лежат на одной прямой.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Упражнения для повторения

322. Луч OC разбивает угол AOB на два угла так, что ∠ AOC : ∠ BOC = 3 : 5. Найдите угол между лучом OC и биссектрисой угла, смежного с углом AOB , если угол BOC на 42° больше угла AOC .

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

323. На рисунке 222 AB = BC , ∠ ABK = ∠ CBM . Докажите, что BM = BK .

324. Равнобедренные треугольники ABC и ADC имеют общее основание AC . Прямая BD пересекает отрезок AC в точке E . Докажите, что AE = EC .

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Наблюдайте, рисуйте, конструируйте, фантазируйте

325. Приведите пример, когда общей частью (пересечением) треугольника и четырёхугольника является восьмиугольник.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Когда сделаны уроки

Пятый постулат Евклида

В § 6 вы узнали, что в качестве аксиом выбирают очевидные утверждения. Тогда почему бы, например, теоремы 1.1 и 5.1 не включить в список аксиом, ведь они тоже очевидны? Ответ на этот вопрос понятен: если какое-то утверждение можно доказать с помощью аксиом, то это утверждение — теорема, а не аксиома. С этих позиций очень поучительна история, связанная с пятым постулатом Евклида

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

V постулат. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны от секущей, с которой эта сумма меньше двух прямых углов ( рис. 223 ).

Можно показать, что пятый постулат и сформулированная нами в § 13 аксиома параллельности прямых равносильны, т. е. из постулата следует аксиома и наоборот — из аксиомы следует постулат.

Более двадцати веков многие учёные пытались доказать пятый постулат, т. е. вывести его из других аксиом Евклида. Лишь в начале XIX в. несколько математиков независимо друг от друга пришли к выводу: утверждение, что через данную точку, не лежащую на данной прямой, мож но провести только одну прямую, параллельную данной , является аксиомой.

Вам может показаться, что в этом выводе ничего особенного нет: присоединяем аксиому параллельности к уже существующему списку аксиом-правил, а дальше доказываем теоремы.

Однако если в футболе добавить только одно правило, например разрешить полевым игрокам играть и руками, то мы получим совершенно новую игру.

Если пятый постулат — это правило, которое мы принимаем, а не теорема, то его можно заменить противоположным утверждением.

Так и поступил Н.И. Лобачевский. Он заменил лишь одно правило — аксиому параллельности прямых — следующим: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, не пересекающие данную. Новая аксиома позволила построить новую геометрию — неевклидову.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Н.И. Лобачевский (1792–1856)

Выдающийся русский математик, про-

фессор Казанского университета.

С подобной идеей несколько позже выступил венгерский математик Янош Бойяи (1802–1860).

Видео:Углы, образованные при пересечении двух прямых секущейСкачать

Углы, образованные при пересечении двух прямых секущей

Геометрия. 7 класс

Конспект урока

Признаки параллельности прямых

Перечень рассматриваемых вопросов:

  • Параллельные прямые.
  • Накрест лежащие, соответственные, односторонние углы.
  • Признаки параллельности прямых.
  • Решение задач на доказательство параллельности прямых.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Признаки параллельности двух прямых:

1. Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.

2. Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.

3. Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Вы уже знаете, что при пересечении двух прямых секущей образуются углы:

  • накрест лежащие: 3 и 6, 4 и 5.
  • односторонние: 3 и 5, 4 и 6.
  • соответственные: 1 и 5, 3 и 7, 2 и 6; 4 и 8.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Прямая c называется секущей по отношению к прямым a и b, если она пересекает их в двух точках.

Рассмотрим и докажем признаки параллельности прямых.

Если при пересечении двух прямых секущей, накрест лежащие углы равны, то прямые параллельны.

Дано: прямые a и b, секущая AB, ∠ 1 = ∠ 2 накрест лежащие.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

В этом случае две прямые, перпендикулярные к третьей не пересекаются, т. е. параллельны.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

2 случай: ∠ 1= ∠ 2 ≠ 90°

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

1) Из середины O отрезка AB проведём перпендикуляр OH к прямой а. На прямой b от точки B отложим отрезок BH1, равный отрезку AH и проведем отрезок OH1.

2) AO = OB т. к. O середина AB; AH = BH1 по построению; ∠1 = ∠2 по условию. Тогда ΔOHA = ΔOH1B по первому признаку равенства треугольников.

Далее следует из равенства треугольников: ∠3 = ∠4 и ∠5 = ∠6.

3) Из равенства углов ∠3 и ∠4 следует, что точка H1 лежит на продолжении луча OH. Это значит, что точки H1, O, H лежат на одной прямой.

4) Из равенства ∠5 и ∠6 следует, что ∠6 = 90°. Это значит, что прямые a и b перпендикулярны к третьей НН1, а значит, по теореме о двух прямых, перпендикулярных к третьей, не пересекаются, т. е. параллельны.

Если при пересечении двух прямых секущей, соответственные углы равны, то прямые параллельны.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Дано: прямые a и b, секущая AB, ∠1 = ∠2 соответственные.

∠1 = ∠2 – по условию и ∠2 = ∠3 – по свойству вертикальных углов.

Значит, ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.

Если при пересечении двух прямых секущей, сумма односторонних углов равна 180°, то прямые параллельны.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

Прямые a и b, секущая AB, ∠1 + ∠2 = 180° ‑ односторонние.

∠3 +∠2 = 180°– по свойству смежных углов, откуда ∠3 = 180° – ∠2.

∠1 + ∠2 = 180 ° по условию, откуда ∠1 = 180° – ∠2.

Тогда ∠1 = ∠3, это накрест лежащие углы, следовательно, a║b по теореме 1.

Разбор заданий тренировочного модуля.

Дано: ∠1= 60°, ∠2 = 120°.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

  1. ∠2 и ∠3 смежные, ∠3 = 180° – 120° = 60° по свойству смежных углов;
  2. ∠3 = ∠1, это накрест лежащие углы;
  3. Значит, прямые a и b параллельны по 1 признаку параллельности прямых.

Ответ: прямые a и b параллельны по 1 признаку параллельности прямых.

Дано: ΔABC – равнобедренный, ∠А = 60°. CD – биссектриса ∠BCK.

Докажите: AB ║ CD.

Сумма односторонних углов при пересечении двух параллельных прямых секущей меньше 180 градусов

  1. ∠A = ∠C = 60° – углы при основании равнобедренного Δ–ка равны.
  2. ∠BCK и ∠С смежные. ∠BCK = 180° – 60°= 120° – по свойству смежных углов.
  3. ∠BCD = ∠CDK = 60° т. к. CD – биссектриса делит угол пополам.
  4. Значит, ∠A = ∠DCK = 60° ‑ соответственные, следовательно, AB║CD по 2 признаку параллельности прямых.

Ответ: AB║CD по 2 признаку параллельности прямых.

🔥 Видео

7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонамиСкачать

7 класс, 30 урок, Углы с соответственно параллельными или перпендикулярными сторонами

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210Скачать

№201. Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей сСкачать

№203. Найдите все углы, образованные при пересечении двух параллельных прямых а и b секущей с

Пары углов в геометрииСкачать

Пары углов в геометрии

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 классСкачать

УГЛЫ: Односторонние, Накрест Лежащие, Внутренние, Внешние // Теорема об углах — Геометрия 7 класс

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)Скачать

Геометрия 7 класс (Урок№19 - Признаки параллельности прямых.)

Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

7 класс, 25 урок, Признаки параллельности двух прямыхСкачать

7 класс, 25 урок, Признаки параллельности двух прямых

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)Скачать

Геометрия 7 класс (Урок№21 - Свойства параллельных прямых.)

Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | ИнфоурокСкачать

Теоремы об углах, образованных двумя парал. прямыми и секущей | Геометрия 7-9 класс #30 | Инфоурок

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.Скачать

Углы при пересечении двух прямых секущей (третьей прямой). Виды углов урок 5. Геометрия 7 класс.

7 класс, 11 урок, Смежные и вертикальные углыСкачать

7 класс, 11 урок, Смежные и вертикальные углы

Углы при пересечении двух прямых третьейСкачать

Углы при пересечении двух прямых  третьей

Задача про углы образованные от пересечения прямых. Геометрия 7 класс.Скачать

Задача про углы образованные от пересечения прямых. Геометрия 7 класс.

ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углыСкачать

ГЕОМЕТРИЯ 7 класс. Признаки параллельности, накрест лежащие, соответственные и односторонние углы

СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 классСкачать

СВОЙСТВА ПАРАЛЛЕЛЬНЫХ ПРЯМЫХ. §15 геометрия 7 класс
Поделиться или сохранить к себе: