Вектора заданы своими координатами в декартовой

Координаты вектора в декартовой системе координат (ДСК)

Для начала дадим определение координат вектора в заданной системе координат. Чтобы ввести данное понятие, определим что мы называем прямоугольной или декартовой системой координат.

Прямоугольная система координат представляет из себя прямолинейную систему координат с взаимно перпендикулярными осями на плоскости или в пространстве.

С помощью введения прямоугольной системы координат на плоскости или в трехмерном пространстве становится возможным описывание геометрических фигур вместе с их свойствами при помощи уравнений и неравенств, то есть использовать алгебраические методы при решении геометрических задач.

Тем самым, мы можем привязать к заданной системе координат векторы. Это значительно расширит наши возможности при решении определенных задач

Прямоугольная система координат на плоскости обычно обозначается O x y , где O x и O y – оси коорднат. Ось O x называют осью абсцисс, а ось O y – осью ординат (в пространстве появляется ещё одна ось O z , которая перпендикулярна и O x и O y ).

Итак, нам дана прямоугольная декартова система координат O x y на плоскости если мы отложим от начала координат векторы i → и j → , направление которых соответственно совпадет с положительными направлениями осей O x и O y , и их длина будет равна условной единице, мы получим координатные векторы. То есть в данном случае i → и j → являются координатными векторами.

Видео:Координаты вектора. 9 класс.Скачать

Координаты вектора. 9 класс.

Координатные векторы

Векторы i → и j → называются координатными векторами для заданной системы координат.

Откладываем от начала координат произвольный вектор a → . Опираясь на геометрическое определение операций над векторами, вектор a → может быть представлен в виде a → = a x · i → + a y · j → , где коэффициенты a x и a y — единственные в своем роде, их единственность достаточно просто доказать методом от противного.

Видео:Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисеСкачать

Доказать, что векторы a, b, c образуют базис и найти координаты вектора d в этом базисе

Разложение вектора

Разложением вектора a → по координатным векторам i → и j → на плоскости называется представление вида a → = a x · i → + a y · j → .

Коэффициенты a x и a y называются координатами вектора в данной системе координат на плоскости.

Координаты вектора в данной системе координат принято записывать в круглых скобках, через запятую, при этом заданные координаты следует отделять от обозначения вектора знаком равенства. К примеру, запись a → = ( 2 ; — 3 ) означает, что вектор a → имеет координаты ( 2 ; — 3 ) в данной системе координат и может быть представлен в виде разложения по координатным векторам i → и j → как a → = 2 · i → — 3 · j → .

Следует обратить внимание, что порядок записи координат, имеет важное значение, если вы запишите координаты вектора в другом порядке, вы получите совершенно другой вектор.

Опираясь на определения координат вектора и их разложения становится очевидным, что единичные векторы i → и j → имеют координаты ( 1 ; 0 ) и ( 0 ; 1 ) соответственно, и они могут быть представлены в виде следующих разложений i → = 1 · i → + 0 · j → ; j → = 0 · i → + 1 · j → .

Также имеет место быть нулевой вектор 0 → с координатами ( 0 ; 0 ) и разложением 0 → = 0 · i → + 0 · j → .

Видео:Координаты точки и координаты вектора 1.Скачать

Координаты точки и координаты вектора 1.

Равные и противоположные векторы

Векторы a → и b → равны тогда, когда их соответствующие координаты равны.

Противоположным вектором называется вектор противоположный данному.

Отсюда следует, что координаты такого вектора будут противоположны координатам данного вектора, то есть, — a → = ( — a x ; — a y ) .

Все вышеизложенное можно аналогично определить и для прямоугольной системы координат, заданной в трехмерном пространстве. В такой системе координат имеет место быть тройка координатных векторов i → , j → , k → , а произвольный вектор a → раскладывается не по двум, а уже по трем координатам, причем единственным образом и имеет вид a → = a x · i → + a y · j → + a z · k → , а коэффициенты этого разложения ( a x ; a y ; a z ) называются координатами вектора в данной (трехмерной) системе координат.

Следовательно, координатные векторы в трехмерном пространстве принимают также значение 1 и имеют координаты i → = ( 1 ; 0 ; 0 ) , j → = ( 0 ; 1 ; 0 ) , k → = ( 0 ; 0 ; 1 ) , координаты нулевого вектора также равны нулю 0 → = ( 0 ; 0 ; 0 ) , и в таком случае два вектора будут считаться равными, если все три соответствующие координаты векторов между собой равны a → = b → ⇔ a x = b x , a y = b y , a z = b z , и координаты противоположного вектора a → противоположны соответствующим координатам вектора a → , то есть, — a → = ( — a x ; — a y ; — a z ) .

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Координаты радиус-вектора точки

Чтобы ввести данное определение, требуется показать в данной системе координат связь координат точки и координат вектора.

Пусть нам дана некоторая прямоугольная декартова система координат O x y и на ней задана произвольная точка M с координатами M ( x M ; y M ) .

Вектор O M → называется радиус-вектором точки M .

Определим, какие координаты в данной системе координат имеет радиус-вектор точки

Вектор O M → имеет вид суммы O M → = O M x → + O M y → = x M · i → + y M · j → , где точки M x и M y это проекции точки М на координатные прямые Ox и Oy соответственно (данные рассуждения следуют из определения проекция точки на прямую), а i → и j → — координатные векторы, следовательно, вектор O M → имеет координаты ( x M ; y M ) в данной системе координат.

Иначе говоря, координаты радиус-вектора точки М равны соответствующим координатам точки М в прямоугольной декартовой системе координат.

Вектора заданы своими координатами в декартовой

Аналогично в трехмерном пространстве радиус-вектор точки M ( x M ; y M ; z M ) разлагается по координатным векторам как O M → = O M x → + O M y → + O M z → = x M · i → + y M · j → + z M · k → , следовательно, O M → = ( x M ; y M ; z M ) .

Видео:Координаты вектора в пространстве. 11 класс.Скачать

Координаты вектора  в пространстве. 11 класс.

Координаты вектора. Направляющие косинусы

Для решения задач с векторами необходимо определить вектор на плоскости или в пространстве, то есть дать информацию о его направлении и длине.

Видео:Как построить точки в системе координат OXYZСкачать

Как построить точки в системе координат OXYZ

Координаты вектора

Пусть задана прямоугольная декартова система координат (ПДСК) $x O y$ и произвольный вектор $overline$, начало которого совпадает с началом системы координат (рис. 1).

Вектора заданы своими координатами в декартовой

Сумма двух векторов, заданных координатами

Вектора заданы своими координатами в декартовой

Чтобы найти сумму двух векторов, заданных своими координатами, надо сложить их соответствующие координаты.

Вектора заданы своими координатами в декартовой

Умножение вектора на число

Вектора заданы своими координатами в декартовой

Чтобы умножить вектор на число, надо каждую координату этого вектора умножить на заданное число.

Рассмотрим далее случай, когда начало вектора не совпадает с началом системы координат. Предположим, что в ПДСК заданы две точки $Aleft(a_ ; a_right)$ и $Bleft(b_ ; b_right)$. Тогда координаты вектора $overline=left(x_ ; y_right)$ находятся по формулам (рис. 4):

Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат конца отнять соответствующие координаты начала.

Вектора заданы своими координатами в декартовой

Задание. Найти координаты вектора $overline$, если $A(-4 ; 2), B(1 ;-3)$

Решение. $overline=(1-(-4) ;-3-2)=(5 ;-5)$

Направляющие косинусы

Направляющими косинусами вектора называются косинусы углов, образованных вектором с положительными направлениями осей координат.

Направление вектора однозначно задается направляющими косинусами. Для единичного вектора направляющие косинусы равны его координатам.

Здесь $alpha$, $beta$ и $gamma$ — углы, которые составляет вектор с положительными направлениями осей $O x$, $O y$ и $O z$ соответственно.

Основное свойство направляющих косинусов

Сумма квадратов направляющих косинусов равна единице.

Видео:Декартовы координаты и векторы в пространствеСкачать

Декартовы координаты и векторы в пространстве

Скалярное произведение векторов

Вектора заданы своими координатами в декартовой

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Векторное произведение векторов | Высшая математикаСкачать

Векторное произведение векторов | Высшая математика

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Вектора заданы своими координатами в декартовой

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Видео:Разложение вектора по базису. 9 класс.Скачать

Разложение вектора по базису. 9 класс.

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

Вектора заданы своими координатами в декартовой

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Вектора заданы своими координатами в декартовой

Также векторы могут образовывать тупой угол. Это выглядит так:

Вектора заданы своими координатами в декартовой

Видео:Векторы. Метод координат. Вебинар | МатематикаСкачать

Векторы. Метод координат. Вебинар | Математика

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.

Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

→a * →b = →|a| * →|b| * cosα

Вектора заданы своими координатами в декартовой

  • Алгебраическая интерпретация.
  • Что важно запомнить про геометрическую интерпретацию скалярного произведения:

    • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0. Вектора заданы своими координатами в декартовой
    • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα

    Видео:Вывод формулы скалярного произведения векторов, заданных координатами в ортонормированном базисе.Скачать

    Вывод формулы скалярного произведения векторов, заданных координатами в ортонормированном базисе.

    Скалярное произведение в координатах

    Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

    Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

    То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

    А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

    Докажем это определение:



      Сначала докажем равенства
      Вектора заданы своими координатами в декартовой

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB — →OA = →b — →a = (bx — ax, by — ay)

    Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
    Вектора заданы своими координатами в декартовой

    Вектора заданы своими координатами в декартовой

    то последнее равенство можно переписать так:

    Вектора заданы своими координатами в декартовой

    а по первому определению скалярного произведения имеем

    Вектора заданы своими координатами в декартовой

    Вектора заданы своими координатами в декартовой

  • Вспомнив формулу вычисления длины вектора по координатам, получаем
    Вектора заданы своими координатами в декартовой
  • Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
  • Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
  • Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!

    Видео:Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

    Аналитическая геометрия, 1 урок, Векторы в пространстве

    Формулы скалярного произведения векторов заданных координатами

    Формула скалярного произведения векторов для плоских задач

    В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by

    Формула скалярного произведения векторов для пространственных задач

    В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by + az * bz

    Формула скалярного произведения n-мерных векторов

    В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = a1 * b1 + a2 * b2 + . + an * bn

    Видео:Скалярное произведение в декартовой системе координатСкачать

    Скалярное произведение в декартовой системе координат

    Свойства скалярного произведения

    Свойства скалярного произведения векторов:



      Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →0 * →0 = 0

    Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2

    Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a

    Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c

    Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)

    Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

    Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

    Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

    По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

    Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

    Аналогично доказываются остальные свойства скалярного произведения.

    Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

    Вектора заданы своими координатами в декартовой

    Вектора заданы своими координатами в декартовой

    Вектора заданы своими координатами в декартовой

    Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

    Нахождение длины вектора через координаты. Практическая часть. 9 класс.

    Примеры вычислений скалярного произведения

    Пример 1.

    Вычислите скалярное произведение двух векторов →a и →b, если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.

    У нас есть все данные, чтобы вычислить скалярное произведение по определению:

    (→a,→b) = →|a| * →|b| * cos(→a,→b) = 3 * 7 cos60° = 3 * 7 * 1/2 = 21/2 = 10,5.

    Ответ: (→a,→b) = 21/2 = 10,5.

    Пример 2.

    Найти скалярное произведение векторов →a и →b, если →|a| = 2, →|b| = 5, ∠(→a,→b) = π/6.

    Используем формулу →a * →b = →|a| * →|b| * cosα.

    В данном случае:

    →a * →b = →|a| * →|b| * cosα = 2 * 5 * cosπ/6 = 10 * √3/2 = 5√3

    Пример 3.

    Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.

    Вектора заданы своими координатами в декартовой

    По свойству дистрибутивности скалярного произведения имеем

    Вектора заданы своими координатами в декартовой

    Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:

    Вектора заданы своими координатами в декартовой

    В силу свойства коммутативности последнее выражение примет вид

    Вектора заданы своими координатами в декартовой

    Итак, после применения свойств скалярного произведения имеем

    Вектора заданы своими координатами в декартовой

    Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:

    Вектора заданы своими координатами в декартовой

    Пример 4.

    В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.

    Вектора заданы своими координатами в декартовой



      Введем систему координат.
      Вектора заданы своими координатами в декартовой

    Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.

    Вектора заданы своими координатами в декартовой

  • Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
  • Найдем координаты векторов →AB1 и →BC1:
    Вектора заданы своими координатами в декартовой
  • Найдем длины векторов →AB1 и →BC1:
    Вектора заданы своими координатами в декартовой
  • Найдем скалярное произведение векторов →AB1 и →BC1:
    Вектора заданы своими координатами в декартовой
  • Найдем косинус угла между прямыми AB1 и BC1:
    Вектора заданы своими координатами в декартовой
  • Пример 5.

    а) Проверить ортогональность векторов: →a(1; 2; -4) и →b(6; -1; 1) .

    б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).

    а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно

    Вектора заданы своими координатами в декартовой

    б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)

    Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.

    Обратите внимание на два существенных момента:

    • В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
    • В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.

    Ответ: а) →a перпендикулярно →b, б) отрезки KL, MN не перпендикулярны.

    Пример 6.

    Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.

    По условию чертеж выполнять не требуется, но для удобства можно сделать:

    Вектора заданы своими координатами в декартовой

    Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.

    Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).

    Вектора заданы своими координатами в декартовой

    Вычислим скалярное произведение:

    Вектора заданы своими координатами в декартовой

    Вычислим длины векторов:

    Вектора заданы своими координатами в декартовой

    Найдем косинус угла:

    Вектора заданы своими координатами в декартовой

    Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:

    Вектора заданы своими координатами в декартовой

    Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

    Найдём сам угол:

    Вектора заданы своими координатами в декартовой

    Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.

    Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°

    Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.

    А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.

    📽️ Видео

    Лекция 22. Декартова система координат на плоскости и полярная система координатСкачать

    Лекция 22. Декартова система координат на плоскости и полярная система координат

    Единичный векторСкачать

    Единичный вектор

    Скалярное произведение векторов через координаты. 9 класс.Скачать

    Скалярное произведение векторов через координаты. 9 класс.

    11 класс, 1 урок, Прямоугольная система координат в пространствеСкачать

    11 класс, 1 урок, Прямоугольная система координат в пространстве

    Коллинеарность векторовСкачать

    Коллинеарность векторов
    Поделиться или сохранить к себе: