Вектор это в географии

КАРТОГРАФИ́ЧЕСКИЕ СПО́СОБЫ ИЗОБРАЖЕ́НИЯ
  • В книжной версии

    Том 13. Москва, 2009, стр. 242

    Скопировать библиографическую ссылку:

    • Вектор это в географии
    • Вектор это в географии
    • Вектор это в географии
    • Вектор это в географии
    • Вектор это в географии

    Вектор это в географии

    КАРТОГРАФИ́ЧЕСКИЕ СПО́ СОБЫ ИЗО­БРАЖ Е́НИЯ, сис­те­мы ус­лов­ных обо­зна­че­ний, при­ме­няе­мые при соз­да­нии карт, для по­ка­за про­стран­ст­вен­но­го раз­ме­ще­ния объ­ек­тов, яв­ле­ний, про­цес­сов, их со­че­та­ний, свя­зей и раз­ви­тия. В этих це­лях ис­поль­зу­ют­ся мно­го­чис­лен­ные и раз­но­об­раз­ные кар­то­гра­фич. сим­во­лы, имею­щие разл. фор­му, раз­мер, цвет, его на­сы­щен­ность, ори­ен­ти­ров­ку и внутр. струк­ту­ру зна­ка и т. п. Они обоб­ще­ны и сис­те­ма­ти­зи­ро­ва­ны в от­но­си­тель­но не­боль­шое чис­ло ос­нов­ных К. с. и. (см. кар­ту Кар­то­гра­фи­че­ские спо­со­бы из­об­ра­же­ния), ко­то­рое уве­ли­чи­ва­ет­ся на ани­ма­ци­он­ных кар­тах за счёт до­бав­ле­ния ди­на­мич. пе­ре­мен­ных: дви­же­ния, ми­га­ния зна­ков, из­ме­не­ния цве­та и т. д. (см. так­же Кар­то­гра­фи­че­ская ани­ма­ция ).

    Видео:Зачем нужен ВЕКТОР. Объяснение смыслаСкачать

    Зачем нужен ВЕКТОР. Объяснение смысла

    Творческая работа «Применение векторов»

    Вектор это в географии

    Творческая работа практическоц направленности с презентацией

    Просмотр содержимого документа
    «РАбота Вектор»

    Возникновение понятия «вектор»………………………….

    Векторы в профессиях

    С понятием вектор я познакомилась на уроках геометрии. Особого интереса она у меня не вызвала. Однако, практически сразу понятие «вектор» встретилось и на уроках физики. Тогда стало ясно, что вектор не сугубо математическое понятие, оно применяется и в других областях науки. Вектор — это направленный отрезок. А зачем они нужны? Встречаются ли они в жизни? Может, стоит присмотреться? Если вы начинаете утро с прогноза погоды, то слышали, к примеру: «Ветер северо-западный, скорость 18 метров в секунду». Нельзя не согласится,, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости. Идем в школу: видим дорожные знаки, вроде этих:

    Вектор это в географииВектор это в географии

    Придя в школу или на работу, видим направляющие знаки:

    Вектор это в географии

    Примеры направляющих знаков вы можете увидеть в Приложении 1. Видим, что векторы присутствуют в нашей жизни.

    Актуальность изучения данной темы связано с многообразием сфер применения векторов: от искусства до сложных задач моделирования реальных процессов. Понятие вектора используется во многих приложениях математики, таких, как современная алгебра и геометрия, теория функций и теория вероятностей. Учебники по таким, на первый взгляд, далеким от математики предметам, как электротехника, радиотехника, теория антенн и др., очень широко используют векторы.

    Я решила выяснить, в каких именно областях науки применяются векторы, насколько это понятие актуально в жизни.

    Целью моей работы:

    Рассмотреть векторы как математические модели реальных процессов.

    Перед собой я поставила такие задачи:

    Изучить литературу по данной теме;

    Изучить понятие «вектор» в предметах естественно-научного цикла;

    Узнать, как осуществляется моделирование с помощью векторов.

    Установить, используется ли данное понятие в жизни;

    Возникновение понятия «вектор»

    Одним из основных понятий математики являются «вектор». Развитие этого понятия происходило благодаря широкому использованию его в различных областях математики, информатики, механики, а так же в технике.

    Вектор – молодое математическое понятие. Этот термин впервые употребил ирландский математик Уильям Гамильтон в 1845 году в своих работах по построению числовых систем, обобщающих комплексные числа. Также он ввел термины «скаляр», «скалярное произведение», «векторное произведение». Исследования в этой области проводил ещё немецкий физик-математик Г.Грассман. Его идеи об абстрактных векторных пространствах привели к важному открытию – возможности рассматривать цветовые ощущения как трехмерные векторы. Это легло в основу современного учения о свете. Им были установлены законы сложения цветов.

    Понятие «вектор» стало широко использоваться в математике в XIX веке, когда стал активно развиваться раздел математики «Комплексные числа». Векторы использовались для наглядного представления таких чисел. В школах эта тема изучается с 1963 года. Сейчас понятие вектора стало одним из ведущих понятий школьного курса математики.

    Есть такое высказывание: «Карьера начинается в школе», поэтому я решила глубже изучить понятие «вектор», рассмотреть его значение в математическом моделировании и выяснить в каких профессиях применяется данное понятие.

    Использование векторов в различных науках:

    Векторы — мощный инструмент не только математики, но и физики. Понятие вектора возникает там, где приходится иметь дело с объектами, которые характеризуются величиной и направлением. Многие физические величины, такие, как сила, скорость, ускорение, характеризуются не только числовым значением, но и направлением. Эти величины очень удобно изображать в виде направленных отрезков. На языке векторов формулируются основные законы механики и электродинамики. Чтобы понимать физику, нужно научиться работать с векторами. Векторная алгебра является фундаментом, на котором построена классическая физика. С помощью векторов можно моделировать различные физические процессы. Например, некоторые физические поля (магнитное и электромагнитное, сила тяжести) рассматриваются как векторные поля. Такая модель позволяет применять к изучаемым понятиям удобные методы математических расчётов.

    Векторные величины в физике: скорость, перемещение, ускорение, сила, импульс, напряженность электрического поля, магнитная индукция, момент силы. Для этих величин важно «сколько» и «куда».

    Скорость изучается на уроках математики и на уроках физики, и при решении многих задач на скорость необходимо сделать рисунок, на котором направление движения показывается стрелками. Векторами удобно моделировать движение в одном направлении, в разных направлениях, движение по кругу, движение по воде. Составленная таким образом схема-модель поможет решить задачу.

    Пример схем некоторых задач на движение:

    Тело с большей скоростью догоняет тело с меньшей скоростью:

    Вектор это в географии

    Движение в противоположные стороны:

    Вектор это в географии

    Равномерным движением по окружности называется такое движение, при котором скорость не меняется по модулю, а меняется лишь её направление. При этом вектор ускорения перпендикулярен вектору скорости. Вектор скорости направлен по касательной к окружности.

    Вектор это в географии

    Еще одна физическая векторная величина, которую я хотела бы рассмотреть – это сила. Сила определяет меру интенсивности воздействия, которое оказывается на тело со стороны других тел или полей. Результат действия силы зависит от направления. На рисунке вы можете видеть модель направления силы тяжести и всемирного тяготения.

    Вектор это в географии

    В физике можно найти ещё много примеров, где векторы применяются как средство моделирования физических процессов.

    Также векторы помогают создавать математические модели некоторых химических процессов. Например, для того, чтобы показать строение атома используются всё те же векторы.

    На схеме вы можете видеть строение атома азота:

    Вектор это в географии

    На таких схемах стрелками изображается электрон, а направление соответствует направлению спина (собственного магнитного момента электрона). Операции над спинами производятся так же, как и операции над векторами, что позволяет трактовать химические процессы языком математики. Примером векторных частиц, имеющих спин служат: фотон, глюон, W- и Z-бозоны, векторные мезоны, ортопозитроний.

    Химические реакции записываются с помощью уравнений, в записи которых используются векторы.

    Пример, реакция обмена, взаимодействие хлорида кальция и нитрата серебра с образованием осадка хлорида серебра:

    CaCl2( ж ) + 2AgNO3( ж ) Вектор это в географииCa(NO3)2( ж ) + 2AgCl( тв )

    Биология относится к наукам естественно-математического цикла. Часто для того, чтобы смоделировать тот или иной процесс, приходится использовать язык математики или переносить суть математических понятий на понятия биологические. Суть понятия «вектор» — это направленность. В биологии этим словом называют организм, который переносит паразита от одного организма к другому. Например, клещи являются переносчиками вируса, вызывающего энцефалит. В генетике вектором считается молекула нуклеиновой кислоты, которая используется для передачи генетического материала другой клетке. С помощью организмов векторов синтезируются различные лекарственные средства, в том числе и антибиотики, ферменты, необходимые человеку (инсулин).

    В настоящее время создана векторная модель для доставки в клетки костного мозга гена, кодирующего гранулоцитарный колониестимулирующий фактор человека. Данный белок относится увеличивает продолжительность жизни клеток костного мозга, усиливает функциональную активность зрелых нейтрофилов. Созданный вектор представляет собой многослойную конструкцию. Эффективность описанной векторной модели была доказана опытным путем. При конструировании противовирусных вакцин немаловажное значение имеет создание специального вектора-носителя, обеспечивающего адресную доставку генов и их защиту от действия нуклеаз крови.

    Оказывается, векторы, как отрезки, показывающие направление нашли своё отражение и в географии. Так, ветер – характеризуемый величиной и направлением, рассматривается как вектор. Распределение ветра исследуется в векторной форме. Таким образом, ветер (горизонтальное движение воздушных частиц относительно подстилающей поверхности) – векторная величина и описывается двумя параметрами – скоростью ( м/с) и направлением. Вектор – модель ветра. Аналогично, с помощью векторов показывают направление движения воздушных масс в циклонах и антициклонах.

    Вектор это в географии

    Вектор также служит моделью всевозможных течений. Горизонтальные перемещения водных масс в морях и океанах называются морскими течениями. К элементам, характеризующим течение, относятся направление и скорость. Значит, течение – векторная величина. С помощью векторов и действий над ними осуществляется учет приливно-отливных течений.

    Течение реки, подводные течения океанов показывают с помощью векторов.

    Вектор это в географии

    С помощью векторов составляют карты миграции птиц и животных.

    Используя действия над векторами можно рассчитать пролетные пути перелетных птиц.

    Векторы в профессиях.

    Я выяснила, что векторы используются во многих науках для моделирования самых различных процессов и явлений. Значит, это понятие потребуется во всех технических профессиях, профессиях, связанных с компьютерном деле, в медицине, химии и т.д. Векторы нужны для освоения профессии строителя и архитектора, так как особое место вектору отводится в сопромате, ведь нагрузка на разные элементы конструкций является разложением вектора по базису векторов силы тяжести и других приложенных к конструкции сил. В самолетостроении, судостроении, автомобилестроении при конструировании транспорта также применяются векторы и их свойства.

    В науке судовождение используются векторы и их свойства для определения кажущегося ветра во время движения судна. В штилевую погоду на судне, имеющего ход, всегда ощущается встречный ветер, равный скорости судна. Он имеет название курсовой ветер и имеет направление, противоположное движению судна. Таким образом, на движущемся судне наблюдается кажущийся ветер, вектор которого равен геометрической сумме истинного и курсового ветров. Для определения направления ветра используется способ построения векторного треугольника.

    Вектор это в географии

    Векторы понадобятся и портному для правильного составления выкроек одежды.

    Выполнив работу, я увидела, что векторы находят широкое применение в геометрии и в прикладных науках, где используются для представления величин, имеющих направление (силы, скорости и т. п.).

    Вектор может служить моделью для любого явления, характеризующегося величиной и направлением. Так, в физике – это сила, ускорение, скорость; в химии – это изображения строения атома, изображения химических реакций; в биологии – это модель переноса вирусов, процессов клонирования и создания вакцин; в географии – это модель ветра, течения. Таким образом, векторное исчисление является универсальным инструментом, позволяющим создавать математические модели физических, химических и биологических процессов. Векторы широко используются в экономике и компьютерной графике, при построении вычислительных нейронных структур и всем известных популярных социальных сетей. Умение оперировать с объектами посредством векторного исчисления помогает находить удобные и наглядные пути решения сложных задач, поэтому хорошее знание этого раздела школьной математики необходимо каждому, чья будущая профессия связана с техникой, компьютерами, естественными науками, пространственным мышлением.

    Башмаков М.А. Что такое вектор?-2-е изд., стер.- М.: Квант, 1976.-221с.

    Выгодский М.Я. Справочник по элементарной математике.-3-е изд., стер. — М.: Наука, 1978.-186с.

    Гусятников П.Б. Векторная алгебра в примерах и задачах.-2-е изд., стер.- М.: Высшая школа, 1985.-302с.

    В.В. Элементарная математика. Повторительный курс.-3-е изд., стер.- М.: Наука,1976.-156с.

    Коксетер Г.С. Новые встречи с геометрией.-2-е изд., стер. — М.: Наука,1978.-324с.

    Погорелов А.В. Аналитическая геометрия.- 3-е изд., стер. — М.: Квант,1968.-235с.

    Видео:Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)Скачать

    Геометрия - 9 класс (Урок№1 - Понятие вектора. Равенство векторов)

    ВЕКТОР

    ВЕКТОР. В физике и математике вектор – это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент, импульс, напряженность электрического и магнитного полей. Их можно противопоставить другим величинам, таким, как масса, объем, давление, температура и плотность, которые можно описать обычным числом, и называются они «скалярами».

    Вектор это в географии

    Векторная запись используется при работе с величинами, которые невозможно задать полностью с помощью обычных чисел. Например, мы хотим описать положение предмета относительно некоторой точки. Мы можем сказать, сколько километров от точки до предмета, но не можем полностью определить его местоположение, пока не узнаем направление, в котором он находится. Таким образом, местонахождение предмета характеризуется численным значением (расстоянием в километрах) и направлением.

    Графически векторы изображаются в виде направленных отрезков прямой определенной длины, как Вектор это в географии на рис. 1. Например, для того чтобы представить графически силу в пять килограммов, надо нарисовать отрезок прямой длиной в пять единиц в направлении действия силы. Стрелка указывает, что сила действует от A к B; если бы сила действовала от B к A, то мы бы записали Вектор это в географии или Вектор это в географии. Для удобства векторы обычно обозначаются полужирными прописными буквами (A, B, C и так далее); векторы A и –A имеют равные численные значения, но противоположны по направлению. Численное значение вектора А называется модулем или длиной и обозначается A или |A|. Это величина, конечно, скаляр. Вектор, начало и конец которого совпадают, называется нулевым и обозначается O.

    Вектор это в географии

    Вектор это в географии

    Два вектора называются равными (или свободными), если их модули и направления совпадают. В механике и физике этим определением, однако, надо пользоваться с осторожностью, так как две равных силы, приложенные к различным точкам тела в общем случае будут приводить к различным результатам. В связи с этим векторы подразделяются на «связанные» или «скользящие», следующим образом:

    Вектор это в географии

    Связанные векторы имеют фиксированные точки приложения. Например, радиус-вектор указывает положение точки относительно некоторого фиксированного начала координат. Связанные векторы считаются равными, если у них совпадают не только модули и направления, но они имеют и общую точку приложения.

    Скользящими векторами называются равные между собой векторы, расположенные на одной прямой.

    Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

    Вектор. Сложение и вычитание. 9 класс | Математика

    Сложение векторов.

    Идея сложения векторов возникла из того, что мы можем найти единственный вектор, который оказывает то же воздействие, что и два других вектора вместе. Если для того, чтобы попасть в некоторую точку, нам надо пройти сначала A километров в одном направлении и затем B километров в другом направлении, то мы могли бы достичь нашей конечной точки пройдя C километров в третьем направлении (рис. 2). В этом смысле можно сказать, что

    Вектор это в географии

    Вектор C называется «результирующим вектором» A и B, он задается построением, показанным на рисунке; на векторах A и B как на сторонах построен параллелограмм, а C – диагональ, соединяющая начало А и конец В. Из рис. 2 видно, что сложение векторов «коммутативно», т.е.

    Аналогичным образом можно сложить несколько векторов, последовательно соединяя их «непрерывной цепочкой», как показано на рис. 3 для трех векторов D, E и F. Из рис. 3 также видно, что

    Вектор это в географии

    т.е. сложение векторов ассоциативно. Суммировать можно любое число векторов, причем векторы необязательно должны лежать в одной плоскости. Вычитание векторов представляется как сложение с отрицательным вектором. Например,

    где, как определялось ранее, –B – вектор, равный В по модулю, но противоположный по направлению.

    Это правило сложения может теперь использоваться как реальный критерий проверки, является ли некоторая величина вектором или нет. Перемещения обычно подчиняются условиям этого правила; то же можно сказать и о скоростях; силы складываются таким же образом, как можно было видеть из «треугольника сил». Однако, некоторые величины, обладающие как численными значениями так и направлениями, не подчиняются этому правилу, поэтому не могут рассматриваться как векторы. Примером являются конечные вращения.

    Видео:Разложение вектора по базису. 9 класс.Скачать

    Разложение вектора по базису. 9 класс.

    Умножение вектора на скаляр.

    Произведение mA или Am, где m (m № 0) – скаляр, а A – ненулевой вектор, определяется как другой вектор, который в m раз длиннее A и имеет тоже направление что и A, если число m положительно, и противоположное, если m отрицательно, как показано на рис. 4, где m равно 2 и –1/2 соответственно. Кроме того, 1A = A, т.е. при умножении на 1 вектор не изменяется. Величина –1A – вектор, равный A по длине, но противоположный по направлению, обычно записывается как –A. Если А – нулевой вектор и(или) m = 0, то mA – нулевой вектор. Умножение дистрибутивно, т.е.

    Вектор это в географии

    Вектор это в географии

    Мы можем складывать любое число векторов, причем порядок слагаемых не влияет на результат. Верно и обратное: любой вектор раскладывается на две или более «компоненты», т.е. на два вектора или более, которые, будучи сложенными, в качестве результирующего дадут исходный вектор. Например, на рис. 2, A и B – компоненты C.

    Многие математические действия с векторами упрощаются, если разложить вектор на три компоненты по трем взаимно перпендикулярным направлениям. Выберем правую систему декартовых координат с осями Ox, Oy и Oz как показано на рис. 5. Под правой системой координат мы подразумеваем, что оси x, y и z располагаются так, как могут быть расположены соответственно большой, указательный и средний пальцы правой руки. Из одной правой системы координат всегда можно получить другую правую систему координат соответствующим вращением. На рис. 5, показано разложение вектор A на три компоненты Вектор это в географиии Вектор это в географии. Они в сумме составляют вектор A, так как

    Вектор это в географии

    Вектор это в географии

    Вектор это в географии

    Можно было бы также сначала сложить Вектор это в географиии получить Вектор это в географии, а затем к Вектор это в географии прибавить Вектор это в географии.

    Проекции вектора А на три координатные оси, обозначенные Ax, Ay и Az называются «скалярными компонентами» вектора A:

    Вектор это в географии

    где a , b и g – углы между A и тремя координатными осями. Теперь введем три вектора единичной длины i, j и k (орты), имеющие то же самое направление, что и соответствующие оси x, y и z. Тогда, если Ax умножить на i, то полученное произведение – это вектор, равный Вектор это в географии, и

    Вектор это в географии

    Два вектора равны тогда и только тогда, когда равны их соответствующие скалярные компоненты. Таким образом, A = B тогда и только тогда, когда Ax = Bx, Ay = By, Az = Bz.

    Два вектора можно сложить, складывая их компоненты:

    Вектор это в географии

    Кроме того, по теореме Пифагора:

    Вектор это в географии

    Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

    Линейные функции.

    Выражение aA + bB, где a и b – скаляры, называется линейной функцией векторов A и B. Это вектор, находящийся в той же плоскости, что A и B; если A и B не параллельны, то при изменении a и b вектор aA + bB будет перемещаться по всей плоскости (рис. 6). Если A, B и C не все лежат в одной плоскости, то вектор aA + bB + cC (a, b и c изменяются) перемещается по всему пространству. Предположим, что A, B и C – единичные векторы i, j и k. Вектор ai лежит на оси x; вектор ai + bj может перемещаться по всей плоскости xy; вектор ai + bj + ck может перемещаться по всему пространству.

    Вектор это в географии

    Можно было бы выбрать четыре взаимно перпендикулярных вектора i, j, k и l и определить четырехмерный вектор как величину

    Вектор это в географии

    а можно было бы продолжать до пяти, шести или любого числа измерений. Хотя визуально такой вектор представить невозможно, никаких математических трудностей здесь не возникает. Такая запись часто бывает полезна; например, состояние движущейся частицы описывается шестимерным вектором P (x, y, z, px, py, pz), компоненты которого – ее положение в пространстве (x, y, z) и импульс (px, py, pz). Такое пространство называется «фазовым пространством»; если мы рассматриваем две частицы, то фазовое пространство 12-мерное, если три, то 18-ти и так далее. Число размерностей можно неограниченно увеличивать; при этом величины, с которыми мы будем иметь дело, ведут себя во многом также, как те, которые мы рассмотрим в оставшейся части этой статьи, а именно, трехмерные векторы.

    Видео:Понятие вектора. Коллинеарные вектора. 9 класс.Скачать

    Понятие вектора. Коллинеарные вектора. 9 класс.

    Умножение двух векторов.

    Правило сложения векторов было получено путем изучения поведения величин, представленных векторами. Нет никаких видимых причин, по которым два вектора нельзя было бы каким-либо образом перемножить, однако это умножение будет иметь смысл только в том случае, если можно показать его математическую состоятельность; кроме того, желательно, чтобы произведение имело определенный физический смысл.

    Существуют два способа умножения векторов, которые соответствуют этим условиям. Результатом одного из них является скаляр, такое произведение называется «скалярным произведением» или «внутренним произведением» двух векторов и записывается A Ч B или (A, B). Результатом другого умножения является вектор, называемый «векторным произведением» или «внешним произведением» и записывается A ґ B или [A, B]. Скалярные произведения имеют физический смысл для одного-, двух- или трех измерений, тогда как векторные произведения определены только для трех измерений.

    Видео:Что такое вектора? | Сущность Линейной Алгебры, глава 1Скачать

    Что такое вектора? | Сущность Линейной Алгебры, глава 1

    Скалярные произведения.

    Если под действием некоторой силы F точка, к которой она приложена, перемещается на расстояние r, то выполненная работа равна произведению r и компоненты F в направлении r. Эта компонента равна F cos б F, r с , где б F, r с – угол между F и r, т.е.

    Произведенная работа = Fr cos б F, r с .

    Это – пример физического обоснования скалярного произведения, определенного для любых двух векторов A, B посредством формулы

    Так как все величины правой части уравнения – скаляры, то

    следовательно, скалярное умножение коммутативно.

    Скалярное умножение также обладает свойством дистрибутивности:

    Если векторы A и B перпендикулярны, то cos б A, B с равен нулю, и, поэтому, A Ч B = 0, даже если ни A, ни B не равны нулю. Именно поэтому мы не можем делить на вектор. Допустим, что мы разделили обе части уравнения A Ч B = A Ч C на A. Это дало бы B = C, и, если бы можно было бы выполнить деление, то это равенство стало бы единственным возможным результатом. Однако, если мы перепишем уравнение A Ч B = A Ч C в виде A Ч (BC) = 0 и вспомним, что (BC) – вектор, то ясно, что (BC) необязательно равен нулю и, следовательно, B не должен быть равным C. Эти противоречивые результаты показывают, что векторное деление невозможно.

    Скалярное произведение дает еще один способ записи численного значения (модуля) вектора:

    Вектор это в географии

    Скалярное произведение можно записать и другим способом. Для этого вспомним, что:

    Вектор это в географии

    Вектор это в географии

    Поскольку последнее уравнение содержит x, y и z в качестве нижних индексов, уравнение, казалось бы, зависит от выбранной конкретной системы координат. Однако это не так, что видно из определения, которое не зависит от выбранных координатных осей.

    Видео:8 класс, 40 урок, Понятие вектораСкачать

    8 класс, 40 урок, Понятие вектора

    Векторные произведения.

    Векторным или внешним произведением векторов называется вектор, модуль которого равен произведению их модулей на синус угла, перпендикулярный исходным векторам и составляющий вместе с ними правую тройку. Это произведение легче всего ввести, рассматривая соотношение между скоростью и угловой скоростью. Первая – вектор; мы теперь покажем, что последнюю также можно интерпретировать как вектор.

    Угловая скорость вращающегося тела определяется следующим образом: выберем любую точку на теле и проведем перпендикуляр из этой точки до оси вращения. Тогда угловая скорость тела – это число радиан, на которые эта линия повернулась за единицу времени.

    Если угловая скорость – вектор, она должна иметь численное значение и направление. Численное значение выражается в радианах в секунду, направление можно выбрать вдоль оси вращения, можно его определить, направив вектор в том направлении, в котором двигался бы правосторонний винт при вращении вместе с телом.

    Рассмотрим вращение тела вокруг фиксированной оси. Если установить эту ось внутри кольца, которое в свою очередь закреплено на оси, вставленной внутрь другого кольца, мы можем придать вращение телу внутри первого кольца с угловой скоростью w 1 и затем заставить внутреннее кольцо (и тело) вращаться с угловой скоростью w 2. Рисунок 7 поясняет суть дела; круговые стрелки показывают направления вращения. Данное тело – это твердая сфера с центром О и радиусом r.

    Вектор это в географии

    Придадим этому телу движение, которое является суммой двух различных угловых скоростей. Это движение довольно трудно представить наглядно, но достаточно очевидно, что тело больше не вращается относительно фиксированной оси. Однако все-таки можно сказать, что оно вращается. Чтобы показать это, выберем некоторую точку P на поверхности тела, которая в рассматриваемый нами момент времени находится на большом круге, соединяющем точки, в которых две оси пересекают поверхность сферы. Опустим перпендикуляры из P на оси. Эти перпендикуляры станут радиусами PJ и PK окружностей PQRS и PTUW соответственно. Проведем прямую POP ў , проходящую через центр сферы. Теперь точка P, в рассматриваемый момент времени одновременно перемещается по окружностям, которые соприкасаются в точке P. За малый интервал времени D t, P перемещается на расстояние

    Вектор это в географии

    Это расстояние равно нулю, если

    Вектор это в географии

    В этом случае точка P находится в состоянии мгновенного покоя, и точно также все точки на прямой POP ў . Остальная часть сферы будет в движении (окружности, по которым перемещаются другие точки, не касаются, а пересекаются). POP ў является, таким образом, мгновенной осью вращения сферы, подобно тому, как колесо, катящееся по дороге в каждый момент времени, вращается относительно своей нижней точки.

    Чему равна угловая скорость сферы? Выберем для простоты точку A, в которой ось w 1 пересекает поверхность. В момент времени, который мы рассматриваем, она перемещается за время D t на расстояние

    Вектор это в географии

    по кругу радиуса r sin w 1. По определению, угловая скорость

    Вектор это в географии

    Из этой формулы и соотношения (1) мы получим

    Вектор это в географии

    Другими словами, если записать численное значение и выбрать направление угловой скорости так, как это описано выше, то эти величины складываются как векторы и могут быть рассмотрены как таковые.

    Теперь можно ввести векторное произведение; рассмотрим тело, вращающееся с угловой скоростью w . Выберем любую точку P на теле и любое начало координат О, которое находится на оси вращения. Пусть r – вектор, направленный от О к P. Точка P движется по окружности со скоростью

    Вектор скорости V является касательным к окружности и указывает в направлении, показанном на рис. 8.

    Вектор это в географии

    Это уравнение дает зависимость скорости V точки от комбинации двух векторов w и r. Используем это соотношение, чтобы определить новый вид произведения, и запишем:

    Так как результатом такого умножения является вектор, это произведение названо векторным. Для любых двух векторов A и B, если

    и направление вектора C таково, что он перпендикулярен плоскости, проходящей через А и B и указывает в направлении, совпадающем с направлением движения правовращающегося винта, если он параллелен C и вращается от A к B. Другими словами, мы можем сказать, что A, B и C, расположенные в таком порядке, образуют правый набор координатных осей. Векторное произведение антикоммутативно; вектор B ґ A имеет тот же модуль, что и A ґ B, но направлен в противоположную сторону:

    Это произведение дистрибутивно, но не ассоциативно; можно доказать, что

    Вектор это в географии

    Посмотрим, как записывается векторное произведение в терминах компонент и единичных векторов. Прежде всего, для любого вектора A,

    Следовательно, в случае единичных векторов,

    Вектор это в географии

    Это равенство также можно записать в виде определителя:

    Вектор это в географии

    Если A ґ B = 0, то либо A или B равно 0, либо A и B коллинеарны. Таким образом, как и в случае скалярного произведения, деление на вектор невозможно. Величина A ґ B равна площади параллелограмма со сторонами A и B. Это легко видеть, так как B sin б A, B с – его высота и A – основание.

    Существует много других физических величин, которые являются векторными произведениями. Одно из наиболее важных векторных произведений появляется в теории электромагнетизма и называется вектором Пойтинга P. Этот вектор задается следующим образом:

    где E и H – векторы электрического и магнитного полей соответственно. Вектор P можно рассматривать как заданный поток энергии в ваттах на квадратный метр в любой точке. Приведем еще несколько примеров: момент силы F (крутящий момент) относительно начала координат, действующей на точку, радиус-вектор которой r, определяется как r ґ F; частица, находящаяся в точке r, массой m и скоростью V, имеет угловой момент mr ґ V относительно начала координат; сила, действующая на частицу, несущую электрический заряд q через магнитное поле B со скоростью V, есть qV ґ B.

    Видео:ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | УмскулСкачать

    ВЕКТОРЫ 9 класс С НУЛЯ | Математика ОГЭ 2023 | Умскул

    Тройные произведения.

    Из трех векторов мы можем сформировать следующие тройные произведения: вектор (A Ч B) ґ C; вектор (A ґ B) ґ C; скаляр (A ґ B) Ч C.

    Первый тип – произведение вектора C и скаляра A Ч B; о таких произведениях мы уже говорили. Второй тип называется двойным векторным произведением; вектор A ґ B перпендикулярен к плоскости, где лежат A и B, и поэтому (A ґ B) ґ C – вектор, лежащий в плоскости A и B и перпендикулярный C. Следовательно, в общем случае, (A ґ B) ґ CA ґ (B ґ C). Записав A, B и C через их координаты (компоненты) по осям x, y и z и умножив, можно показать, что A ґ (B ґ C) = B ґ (A Ч C) – C ґ (A Ч B). Третий тип произведения, который возникает при расчетах решетки в физике твердого тела, численно равен объему параллелепипеда с ребрами A, B, C. Так как (A ґ B) Ч C = A Ч (B ґ C), знаки скалярного и векторного умножений можно менять местами, и произведение часто записывается как (A B C). Это произведение равно определителю

    Вектор это в географии

    Заметим, что (A B C) = 0, если все три вектора лежат в одной и той же плоскости или, если А = 0 или (и) В = 0 или (и) С = 0.

    Видео:Урок 8. Векторные величины. Действия над векторами.Скачать

    Урок 8. Векторные величины. Действия над векторами.

    ДИФФЕРЕНЦИРОВАНИЕ ВЕКТОРА

    Предположим, что вектор U является функцией одной скалярной переменной t. Например, U может быть радиус-вектором, проведенным из начала координат до перемещающейся точки, а t – временем. Пусть t изменится на небольшую величину D t, что приведет к изменению U на величину D U. Это показано на рис. 9. Отношение D U/ D t – вектор, направленный в том же направлении, что и D U. Мы можем определить производную U по t, как

    Вектор это в географии

    Вектор это в географии

    при условии, что такой предел существует. С другой стороны, можно представить U как сумму компонент по трем осям и записать

    Вектор это в географии

    Если U – радиус-вектор r, то dr/dt – скорость точки, выраженная как функция времени. Продифференцировав по времени еще раз, мы получим ускорение. Предположим, что точка перемещается вдоль кривой, показанной на рис. 10. Пусть s – расстояние, пройденное точкой вдоль кривой. В течение малого интервала времени D t точка пройдет расстояние D s вдоль кривой; положение радиус-вектора изменится на D r. Следовательно D r/ D s – вектор направленный как D r. Далее

    Вектор это в географии

    Вектор это в географии

    есть единичный вектор, касательный к кривой. Это видно из того, что при приближении точки Q к точке P, PQ приближается к касательной и D r приближается к D s.

    Формулы для дифференцирования произведения подобны формулам для дифференцирования произведения скалярных функций; однако, так как векторное произведение антикоммутативно, порядок умножения должен быть сохранен. Поэтому,

    Вектор это в географии

    Таким образом, мы видим, что, если вектор является функцией одной скалярной переменной, то мы можем представить производную почти также, как в случае скалярной функции.

    Видео:Вектор. Определение. Коллинеарные векторы. Равные векторы.Скачать

    Вектор. Определение. Коллинеарные векторы. Равные векторы.

    Вектор и скалярные поля.

    Видео:Что такое вектор? | Коллинеарные векторы | Сонаправленные векторы | МегаШколаСкачать

    Что такое вектор? | Коллинеарные векторы | Сонаправленные векторы | МегаШкола

    Градиент.

    В физике часто приходится иметь дело с векторными или скалярными величинами, которые меняются от точки к точке в заданной области. Такие области называются «полями». Например, скаляр может быть температурой или давлением; вектор может быть скоростью движущейся жидкости или электростатическим полем системы зарядов. Если мы выбрали некоторую систему координат, то любой точке P (x, y, z) в заданной области соответствует некоторый радиус-вектор r (= xi + yj + zk) и также значение векторной величины U (r) или скаляра f (r), связанных с ним. Предположим, что U и f определены в области однозначно; т.е. каждой точке соответствует одна и только одна величина U или f , хотя различные точки могут, конечно, иметь различные значения. Допустим, что мы хотим описать скорость, с которой U и f изменяются при передвижении по этой области.

    Простые частные производные, такие, как U/ ¶ x и ¶f / ¶ y, нас не устраивают, потому что они зависят от конкретно выбранных координатных осей. Однако можно ввести векторный дифференциальный оператор, независимый от выбора осей координат; этот оператор называется «градиентом».

    Пусть мы имеем дело со скалярным полем f . Сначала в качестве примера рассмотрим контурную карту области страны. В этом случае f – высота над уровнем моря; контурные линии соединяют точки с одним и тем же значением f . При движении вдоль любой из этих линий f не меняется; если двигаться перпендикулярно этим линиям, то скорость изменения f будет максимальной. Мы можем каждой точке сопоставить вектор, указывающий величину и направление максимального изменения скорости f ; такая карта и некоторые из этих векторов показаны на рис. 11. Если мы проделаем это для каждой точки поля, то получим векторное поле, связанное со скалярным полем f . Это поле вектора, называемого «градиентом» f , который записывается как grad f или Сf (символ С также называется «набла»).

    Вектор это в географии

    В случае трех измерений, контурные линии становятся поверхностями. Малое смещение D r (= i D x + j D y + k D z) приводит к изменению f , которое записывается как

    Вектор это в географии

    где точками обозначены члены более высоких порядков. Это выражение можно записать в виде скалярного произведения

    Вектор это в географии

    Разделим правую и левую части этого равенства на D s, и пусть D s стремится к нулю; тогда

    Вектор это в географии

    где dr/ds – единичный вектор в выбранном направлении. Выражение в круглых скобках – вектор, зависящий от выбранной точки. Таким образом, d f /ds имеет максимальное значение, когда dr/ds указывает в том же направлении, выражение, стоящее в скобках, является градиентом. Таким образом,

    Вектор это в географии

    – вектор, равный по величине и совпадающий по направлению с максимальной скоростью изменения f относительно координат. Градиент f часто записывается в виде

    Вектор это в географии

    Это означает, что оператор С существует сам по себе. Во многих случаях он ведет себя, как вектор, и фактически является «векторным дифференциальным оператором» – одним из наиболее важных дифференциальных операторов в физике. Несмотря на то, что С содержит единичные векторы i, j и k, его физический смысл не зависит от выбранной системы координат.

    Какова связь между Сf и f ? Прежде всего предположим, что f определяет потенциал в любой точке. При любом малом смещении D r величина f изменится на

    Вектор это в географии

    Если q – величина (например масса, заряд), перемещенная на D r, то работа, выполненная при перемещении q на D r равна

    Вектор это в географии

    Так как D r – перемещение, то q Сf – сила; – Сf – напряженность (сила на единицу количества), связанная с f . Например, пусть U – электростатический потенциал; тогда E – напряженность электрического поля, задается формулой

    Допустим, что U создается точечным электрическим зарядом в q кулонов, помещенным в начало координат. Значение U в точке P (x, y, z) с радиус-вектором r задается формулой

    Вектор это в географии

    где e 0 – диэлектрическая постоянная свободного пространства. Поэтому

    Вектор это в географии

    откуда следует, что E действует в направлении r и его величина равна q/(4 pe 0r 3 ).

    Зная скалярное поле, можно определить связанное с ним векторное поле. Также возможно и обратное. С точки зрения математической обработки скалярными полями оперировать легче, чем векторными, так как они задаются одной функцией координат, в то время как векторное поле требует три функции, соответствующие компонентам вектора в трех направлениях. Таким образом, возникает вопрос: дано векторное поле, может ли мы записать связанное с ним скалярное поле?

    Видео:➡️ КАК ВЫЧИТАТЬ ВЕКТОРЫ?Скачать

    ➡️ КАК ВЫЧИТАТЬ ВЕКТОРЫ?

    Дивергенция и ротор.

    Мы видели результат действия С на скалярную функцию. Что произойдет, если С применить к вектору? Имеются две возможности: пусть U (x, y, z) – вектор; тогда мы можем образовать векторное и скалярное произведения следующим образом:

    Вектор это в географии

    Вектор это в географии

    Первое из этих выражений – скаляр, называемый дивергенцией U (обозначается divU); второе – вектор, названный ротор U (обозначается rotU).

    Эти дифференциальные функции, дивергенция и ротор, широко используются в математической физике.

    Представьте, что U – некоторый вектор и что он и его первые производные непрерывны в некоторой области. Пусть P – точка в этой области, окруженная малой замкнутой поверхностью S, ограничивающей объем D V. Пусть n – единичный вектор, перпендикулярный к этой поверхности в каждой точке (n меняет направление при движении вокруг поверхности, но всегда имеет единичную длину); пусть n направлен наружу. Покажем, что

    Вектор это в географии

    Вектор это в географии

    Здесь S указывает, что эти интегралы берутся по всей поверхности, da – элемент поверхности S.

    Для простоты мы выберем удобную для нас форму S в виде небольшого параллелепипеда (как показано на рис. 12) со сторонами D x, D y и D z; точка P – центр параллелепипеда. Вычислим интеграл из уравнения (4) сначала по одной грани параллелепипеда. Для передней грани n = i (единичный вектор параллелен оси x); D a = D y D z. Вклад в интеграл от передней грани равен

    Вектор это в географии

    Вектор это в географии

    На противоположной грани n = –i; эта грань дает вклад в интеграл

    Вектор это в географии

    Используя теорему Тейлора, получим общий вклад от двух граней

    Вектор это в географии

    Заметим, что D x D y D z = D V. Аналогичным образом можно вычислить вклад от двух других пар граней. Полный интеграл равен

    Вектор это в географии

    и если мы положим D V ® 0, то члены более высокого порядка исчезнут. По формуле (2) выражение в скобках – это divU, что доказывает равенство (4).

    Равенство (5) можно доказать таким же образом. Воспользуемся снова рис. 12; тогда вклад от передней грани в интеграл будет равен

    Вектор это в географии

    и, используя теорему Тейлора, получим, что суммарный вклад в интеграл от двух граней имеет вид

    Вектор это в географии

    т.е. это два члена из выражения для rotU в уравнении (3). Другие четыре члена получатся после учета вкладов от других четырех граней.

    Что, в сущности, означают эти соотношения? Рассмотрим равенство (4). Предположим, что U – скорость (жидкости, например). Тогда n Ч U da = Un da, где Unявляется нормальной компонентой вектора U к поверхности. Поэтому, Un da – это объем жидкости, протекающей через da в единицу времени, аВектор это в географии – это объем жидкости, вытекающей через S в единицу времени. Следовательно,

    Вектор это в географии

    – скорость расширения единицы объема вокруг точки P. Отсюда дивергенция получила свое название; она показывает скорость, с которой жидкость расширяется из (т.е. расходится от) P.

    Чтобы объяснить физическое значение ротора U, рассмотрим другой поверхностный интеграл по маленькому цилиндрическому объему высотой h, окружающему точку P; плоско-параллельные поверхности могут быть ориентированы в любом направлении, которое мы выбираем. Пусть k –единичный вектор перпендикулярный к каждой поверхности, и пусть площадь каждой поверхности D A; тогда полный объем D V = h D A (рис. 13). Рассмотрим теперь интеграл

    Вектор это в географии

    Вектор это в географии

    Подынтегральное выражение – уже упоминавшееся ранее тройное скалярное произведение. Это произведение будет равно нулю на плоских поверхностях, где k и n параллельны. На кривой поверхности

    Вектор это в географии

    где ds – элемент кривой как показано на рис. 13. Сравнивая эти равенства с соотношением (5), получаем, что

    Вектор это в географии

    Мы по-прежнему предполагаем, что U – скорость. Чему в таком случае будет равна средняя угловая скорость жидкости вокруг k? Очевидно, что

    Вектор это в географии

    если D A ® 0. Это выражение максимально, когда k и rotU указывают в одном и том же направлении; это означает, что rotU – вектор, равный удвоенной угловой скорости жидкости в точке P. Если жидкость вращается относительно P, то rotU № 0, и векторы U будут вращаться вокруг P. Отсюда и возникло название ротора.

    Видео:Скалярное произведение векторов. 9 класс.Скачать

    Скалярное произведение векторов. 9 класс.

    Теорема дивергенции (теорема Остроградского – Гаусса)

    Теорема дивергенции (теорема Остроградского – Гаусса) является обобщением формулы (4) для конечных объемов. Она утверждает, что для некоторого объема V, ограниченного замкнутой поверхностью S,

    Вектор это в географии

    и справедлива для всех непрерывных векторных функций U, имеющих непрерывные первые производные всюду в V и на S. Мы не будем приводить здесь доказательство этой теоремы, но ее справедливость можно понять интуитивно, представляя объем V разделенным на ячейки. Поток U через поверхность, общую для двух ячеек обращается в нуль, и только ячейки, находящиеся на границе S внесут вклад в поверхностный интеграл.

    Видео:Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.Скачать

    Лекция 16. Понятие вектора и векторного пространства. Базис векторного пространства.

    Теорема Стокса

    является обобщением уравнения (6) для конечных поверхностей. Она утверждает, что

    Вектор это в географии

    где C – замкнутая кривая и S – любая поверхность, ограниченная этой кривой. U и ее первые производные должны быть непрерывны всюду на S и C.

    Александров П.С. Лекции по аналитической геометрии. М., 1968
    Погорелов А.В. Аналитическая геометрия, 3 изд. М., 1968

    📸 Видео

    Координаты вектора. 9 класс.Скачать

    Координаты вектора. 9 класс.

    Аналитическая геометрия, 1 урок, Векторы в пространствеСкачать

    Аналитическая геометрия, 1 урок, Векторы в пространстве

    ✓ Что такое вектор? Чем отличается понятие "вектор" от понятия "направленный отрезок" | Борис ТрушинСкачать

    ✓ Что такое вектор? Чем отличается понятие "вектор" от понятия "направленный отрезок" | Борис Трушин

    Единичный векторСкачать

    Единичный вектор

    vector | Библиотека стандартных шаблонов (stl) | Уроки | C++ | #1Скачать

    vector | Библиотека стандартных шаблонов (stl) | Уроки | C++ | #1
    Поделиться или сохранить к себе: