Два четырехугольника с одинаковыми периметрами

Как найти периметр сторон четырехугольника, формула нахождения

Совсем недавно в России родители отправляли своих детей в первый класс и с нетерпением ждали их первых заданий. Они с удовольствием наблюдали за тем, как их дети знакомятся с буквами русского алфавита, учатся считать палочки и точечки, выводить различные кривые и прямые линии. Родители помогали знакомиться своим детям с тем, что тетрадь в клеточку предназначена для написания цифр, а тетрадь в линеечку — для письма.

Сегодня, будучи второклассниками, ученики России достигли больших успехов в сфере начального образования, а точнее, в математическом прогрессе. Учителя научили их складывать и вычитать, умножать, делить, измерять.

Кстати, по поводу измерения: с линейкой ребята вторых классов России уже знакомы, и применение ей, кроме как стрелять с задней парты в соседа бумажки, они тоже знают. Именно об измерениях мы и заведем сегодняшний разговор.

Как мы видим, прогресс обучения нынешних учеников проходит слегка в ускоренном режиме. С теми темами, например, такими как периметр, дети 90-х знакомились позже, а наши ребята узнают сегодня. Конечно, в этом нет ничего страшного. Время меняется, и программа обучения тоже должна не стоять на месте. Зато, как считают многие, наши дети будут умнее нас.

Содержание
  1. Школьное задание
  2. Два четырехугольника с одинаковыми периметрами
  3. Изучение зависимостей площадей и периметров в четырехугольниках
  4. Четырехугольник — виды и свойства с примерами решения
  5. Внутренние и внешние углы четырехугольника
  6. Сумма внутренних углов выпуклого четырёхугольника
  7. Сумма внешних углов выпуклого четырёхугольника
  8. Параллелограмм
  9. Параллелограмм и его свойства
  10. Признаки параллелограмма
  11. Прямоугольник
  12. Признак прямоугольника
  13. Ромб и квадрат
  14. Свойства ромба
  15. Трапеция
  16. Средняя линия треугольника
  17. Средняя линия трапеции
  18. Координаты середины отрезка
  19. Теорема Пифагора
  20. Справочный материал по четырёхугольнику
  21. Пример №1
  22. Признаки параллелограмма
  23. Пример №2 (признак параллелограмма).
  24. Прямоугольник
  25. Пример №3 (признак прямоугольника).
  26. Ромб. Квадрат
  27. Пример №4 (признак ромба)
  28. Теорема Фалеса. Средняя линия треугольника
  29. Пример №5
  30. Пример №6
  31. Трапеция
  32. Пример №7 (свойство равнобедренной трапеции).
  33. Центральные и вписанные углы
  34. Пример №8
  35. Вписанные и описанные четырёхугольники
  36. Пример №9
  37. Пример №10
  38. 🎦 Видео

Видео:Периметр прямоугольника. Как найти периметр прямоугольника?Скачать

Периметр прямоугольника. Как найти периметр прямоугольника?

Школьное задание

Наверное, многих родителей сегодня удивляют нынешние задания для второклассников. В учебнике по математике для второго класса можно встретить такое задание, как, например: «Найди периметр четырехугольника, две стороны которого равны по 2 сантиметра, а другие две будут по 3 сантиметра». Как справиться с данным заданием?

Многие родители настоящего времени являются теми самыми детьми девяностых годов, и, естественно, в большинстве случаев, мало кто помнит, что такое периметр. Особенно, если учились не на отлично, да и не совсем на «хорошо».

Естественно, каждому родителю хотелось бы, чтоб его ребенку было проще в обучении, и они всеми силами стараются ему в этом помочь. Некоторым родителям сначала приходится справиться со своей душевной паникой, а уже потом продолжать объяснять своему ребенку. В этом случае многим помогает интернет, место, где можно найти ответы на все тревожные вопросы. Во времена девяностых, к сожалению, такой «роскоши» не было.

Два четырехугольника с одинаковыми периметрами

Вопросы:

  1. Что такое «периметр»?
  2. Как находить периметр четырехугольника?

Ответы на вопросы:

Для тех, кто знает, вспоминаем, а кто не знает — объясняем:

  1. Периметр — это сумма всех сторон четырехугольника. Всего лишь каждая грань по отдельности будет равна после сложения единому числу.
  2. Найти периметр, значит, что нужно взять линейку и измерить каждую границу четырехугольника. После выполнения данного действия необходимо сложить полученные числа между собой. Общая полученная сумма и будет являться периметром.

Решение:

В данном случае, по действиям нашей задачи, нам известны суммы сторон четырехугольника, а именно две из них по 2 сантиметра и две по 3 сантиметра. Поэтому нам остается всего лишь перечертить четырехугольник в тетрадь и сложить известные нам суммы каждой грани.

2+2+3+3=10

Как мы видим, периметр нашей четырехугольной фигуры равен 10.

В математике сумму всех сторон (периметр) мы обозначаем символом Р.

Теперь записываем правильное решение этой задачи:

Р=2+2+3+3;

Ответ: Р=10.

В математике существует формула, запомнив которую, вы никогда не будете забывать, как найти периметр (общую сумму всех сторон) четырехугольника и выглядит она так:

P = a + b + c + d (где a , b, c, d являются границами четырехугольника).

Кроме того, хотелось бы обратить внимание, что четырехугольник не обязательно будет являться прямоугольником. Это может быть и квадрат, у которого все стороны равны, и любая другая геометрическая фигура, у которой есть четыре стороны и такое же количество углов.

Грани произвольного четырехугольника могут совсем не совпадать ни с одной из сторон фигуры. Это могут быть совершенно разные числа. И, в итоге, получаются фигуры с четырьмя сторонами и теми же четырьмя углами. Фигура не будет похожа ни на квадрат, ни на прямоугольник, так как углы ее прямыми не будут. И периметр, соответственно мы вычисляем по той же самой единой формуле.

Или взять, например трапецию. Обычно у трапеции две стороны одинаковые, а другие две совсем не совпадают, но между собой параллельные.

На примере трапеция может выглядеть так: верхняя грань равна 2 сантиметра, левая и правая стороны по 3 сантиметра, соединяем их с нижней гранью и получаем трапецию. Высчитываем каждую ее сторону и снова получаем периметр четырехугольника.

Два четырехугольника с одинаковыми периметрами

Вычислить по формуле всегда будет проще, и не важно, каким числам равна каждая сторона.

Так как современные дети страны уже дошли до таблицы умножения, с периметром квадрата у них проблем не будет. Зная размер одной стороны квадрата, нужно умножить ее на все четыре равные стороны.

В общем, теперь стоит взять линейку с карандашом и лист бумаги. После этого следует начертить произвольные фигуры с четырьмя углами и высчитать общую сумму ее сторон.

Видео:Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольникаСкачать

Найти периметр четырехугольника, вершины которого лежат на серединах сторон другого четырехугольника

Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Видео:Как найти периметр данной фигуры? Решение за одну минуту!Скачать

Как найти периметр данной фигуры? Решение за одну минуту!

Изучение зависимостей площадей и периметров в четырехугольниках

Два четырехугольника с одинаковыми периметрами

Автор работы награжден дипломом победителя III степени

С понятием периметр и площадь я познакомилась в 3 классе. Э ти важные понятия необходимы человеку на протяжении всей его жизни. Деятельность строителей, инженеров, земледельцев и представителей других профессий немыслима без прочных знаний по этой теме.

Актуальность темы . Понятия «площади» и «периметра» необходимы человеку в окружающей жизни постоянно, например – сделать ремонт в доме или красиво оформить клумбу на даче. И то и другое понятие связывают стороны многоугольников. Знание зависимостей между этими величинами очень важно для современного человека.

Цель проекта: установить некоторые зависимости между площадью и периметром, увидеть их применение в практических ситуациях.

Задачи:повторить понятия по теме исследования, а именно: «площадь фигуры» и «периметр фигуры»; провести необходимые исследования и опыты; сделать выводы о зависимости площадей и периметров ; рассмотреть практическое применение полученных результатов.

Определение предмета исследования. Что нужно выяснить:

Как связаны периметры и площади прямоугольников?

Зависит ли площадь прямоугольника от его периметра?

Какой прямоугольник имеет наибольшую площадь при заданном периметре?

Если известен периметр прямоугольника, то нельзя ли однозначно установить его площадь?

Что можно сказать о зависимости площади квадрата от его периметра?

Проблема. Никаких зависимостей связывающих площади и периметры фигур мы пока не изучили.

Вот, самый простой пример, который задает проблему: «Есть два участка земли 80 м на 100 м и 50 м на 160 м. Вроде, площадь одинаковая – 8000 м 2 , а первый участок выгоднее купить, чем второй, забор то на 60 м короче строить». С точки зрения математики, все ясно, а вот логически – странно, периметр это замкнутая воображаемая нить, и то, что внутри нее не должно меняться, как ее не крути. Почему есть разница в периметрах? Так все-таки, есть ли какие-то зависимости, или площадь и периметр никак не зависят друг от друга?

Гипотеза. Предполагаем, что некоторые зависимости существуют. С изменением длины одной из сторон прямоугольника при заданном периметре изменится и площадь этого прямоугольника. Можно даже предположить, что если площадь больше, то периметр больше. Если у одной фигуры больше периметр, чем у второй, то её площадь больше, меньше или по-разному?

Периметр – величина, равная сумме длин всех сторон многоугольника.

Площадь фигуры – величина, показывающая сколько места занимает фигура на плоскости.

Свойства площадей нам тоже известны:

Равные фигуры имеют равные площади.

Площадь всей фигуры равна сумме площадей ее частей.

За единицу площади принимают площадь квадрата, сторона которого равна единичному отрезку.

Исследования начнем с простой и хорошо знакомой нам фигуры – прямоугольника.

Заполним таблицу, считая площадь одной клеточки равной 1 см 2

Видео:Что такое периметр. Как найти периметр многоугольника?Скачать

Что такое периметр. Как найти периметр многоугольника?

Четырехугольник — виды и свойства с примерами решения

Содержание:

Четырёхугольник — это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки — сторонами четырёхугольника.

Два четырехугольника с одинаковыми периметрами

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне — противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин — противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области — внутреннюю и внешнюю.

Два четырехугольника с одинаковыми периметрами

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Два четырехугольника с одинаковыми периметрами

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Два четырехугольника с одинаковыми периметрами

Видео:8 класс, 3 урок, ЧетырехугольникСкачать

8 класс, 3 урок, Четырехугольник

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Два четырехугольника с одинаковыми периметрамиуглы Два четырехугольника с одинаковыми периметрамиявляются внешними.

Два четырехугольника с одинаковыми периметрами

Каждый внутренний угол выпуклого четырёхугольника меньше Два четырехугольника с одинаковыми периметрамиГрадусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Два четырехугольника с одинаковыми периметрамиДва четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Два четырехугольника с одинаковыми периметрамиДоказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Два четырехугольника с одинаковыми периметрами

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Два четырехугольника с одинаковыми периметрами

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Два четырехугольника с одинаковыми периметрами

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Два четырехугольника с одинаковыми периметрамиДва четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Два четырехугольника с одинаковыми периметрами

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Два четырехугольника с одинаковыми периметрами

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Два четырехугольника с одинаковыми периметрами

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Два четырехугольника с одинаковыми периметрами

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Два четырехугольника с одинаковыми периметрамито параллелограмм Два четырехугольника с одинаковыми периметрамиявляется ромбом.

Два четырехугольника с одинаковыми периметрами

Доказательство теоремы 1.

Дано: Два четырехугольника с одинаковыми периметрамиромб.

Докажите, что Два четырехугольника с одинаковыми периметрами

Доказательство (словестное): По определению ромба Два четырехугольника с одинаковыми периметрамиПри этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Два четырехугольника с одинаковыми периметрамиравнобедренный. Медиана Два четырехугольника с одинаковыми периметрами(так как Два четырехугольника с одинаковыми периметрами), является также и биссектрисой и высотой. Т.е. Два четырехугольника с одинаковыми периметрамиТак как Два четырехугольника с одинаковыми периметрамиявляется прямым углом, то Два четырехугольника с одинаковыми периметрами. Аналогичным образом можно доказать, что Два четырехугольника с одинаковыми периметрами

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Два четырехугольника с одинаковыми периметрами

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Два четырехугольника с одинаковыми периметрами

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Два четырехугольника с одинаковыми периметрами

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

План доказательства теоремы 2

Дано: Два четырехугольника с одинаковыми периметрамиравнобедренная трапеция. Два четырехугольника с одинаковыми периметрами

Докажите: Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Два четырехугольника с одинаковыми периметрамитогда Два четырехугольника с одинаковыми периметрамиЗапишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Два четырехугольника с одинаковыми периметрамипроведем параллельную прямую к прямой Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Два четырехугольника с одинаковыми периметрамичерез точку Два четырехугольника с одинаковыми периметрами— середину стороны Два четырехугольника с одинаковыми периметрамипроведите прямую параллельную Два четырехугольника с одинаковыми периметрамиКакая фигура получилась? Является ли Два четырехугольника с одинаковыми периметрамитрапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Два четырехугольника с одинаковыми периметрамиМожно ли утверждать, что Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Доказательство. Пусть дан треугольник Два четырехугольника с одинаковыми периметрамии его средняя линия Два четырехугольника с одинаковыми периметрамиПроведём через точку Два четырехугольника с одинаковыми периметрамипрямую параллельную стороне Два четырехугольника с одинаковыми периметрамиПо теореме Фалеса, она проходит через середину стороны Два четырехугольника с одинаковыми периметрамит.е. совпадает со средней линией Два четырехугольника с одинаковыми периметрамиТ.е. средняя линия Два четырехугольника с одинаковыми периметрамипараллельна стороне Два четырехугольника с одинаковыми периметрамиТеперь проведём среднюю линию Два четырехугольника с одинаковыми периметрамиТ.к. Два четырехугольника с одинаковыми периметрамито четырёхугольник Два четырехугольника с одинаковыми периметрамиявляется параллелограммом. По свойству параллелограмма Два четырехугольника с одинаковыми периметрамиПо теореме Фалеса Два четырехугольника с одинаковыми периметрамиТогда Два четырехугольника с одинаковыми периметрамиТеорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Два четырехугольника с одинаковыми периметрами

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Два четырехугольника с одинаковыми периметрами

Доказательство: Через точку Два четырехугольника с одинаковыми периметрамии точку Два четырехугольника с одинаковыми периметрамисередину Два четырехугольника с одинаковыми периметрамипроведём прямую и обозначим точку пересечения со стороной Два четырехугольника с одинаковыми периметрамичерез Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Два четырехугольника с одинаковыми периметрамирадиусом 3 единицы. Вычислите значение выражения Два четырехугольника с одинаковыми периметрамиЕсть ли связь между значением данного выражения и координатой точки Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Два четырехугольника с одинаковыми периметрамии Два четырехугольника с одинаковыми периметрамии точка Два четырехугольника с одинаковыми периметрамикоторая является серединой отрезка Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрамито Два четырехугольника с одинаковыми периметрамиа отсюда следует, что Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

2) По теореме Фалеса, если точка Два четырехугольника с одинаковыми периметрамиявляется серединой отрезка Два четырехугольника с одинаковыми периметрамито на оси абсцисс точка Два четырехугольника с одинаковыми периметрамиявляется соответственно координатой середины отрезка концы которого находятся в точках Два четырехугольника с одинаковыми периметрамии Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

3) Координаты середины отрезка Два четырехугольника с одинаковыми периметрамис концами Два четырехугольника с одинаковыми периметрамии Два четырехугольника с одинаковыми периметрамиточки Два четырехугольника с одинаковыми периметраминаходятся так:

Два четырехугольника с одинаковыми периметрами

Убедитесь, что данная формула верна в случае, если отрезок Два четырехугольника с одинаковыми периметрамипараллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Два четырехугольника с одинаковыми периметрамикак показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Два четырехугольника с одинаковыми периметрами

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Два четырехугольника с одинаковыми периметрами

Шаг 4. На сторонах другого квадрата отметьте отрезки Два четырехугольника с одинаковыми периметрамикак показано на рисунке и отрежьте четыре прямоугольных треугольника.

Два четырехугольника с одинаковыми периметрами

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Два четырехугольника с одинаковыми периметрами

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Два четырехугольника с одинаковыми периметрами

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Два четырехугольника с одинаковыми периметрамито, Два четырехугольника с одинаковыми периметрами— прямоугольный.

Два четырехугольника с одинаковыми периметрами

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Два четырехугольника с одинаковыми периметрамиявляются Пифагоровыми тройками, то и числа Два четырехугольника с одинаковыми периметрамитакже являются Пифагоровыми тройками.

Видео:Периметр треугольника. Как найти периметр треугольника?Скачать

Периметр треугольника. Как найти периметр треугольника?

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Два четырехугольника с одинаковыми периметрами(рис. 1).

Точки А, В, С, D — вершины четырёхугольника, отрезки АВ, ВС, CD, DA — его стороны. Углы DAB, ABC, BCD, CDA — это углы четырёхугольника. Их также обозначают одной буквой — Два четырехугольника с одинаковыми периметрамиДва четырехугольника с одинаковыми периметрами

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Два четырехугольника с одинаковыми периметрами

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA — неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ — соседние, а вершины А и С, Два четырехугольника с одинаковыми периметрами, стороны AD и ВС — противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD — диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б — невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Два четырехугольника с одинаковыми периметрами

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Два четырехугольника с одинаковыми периметрами=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Два четырехугольника с одинаковыми периметрами+ CD (по неравенству треугольника). Тогда Два четырехугольника с одинаковыми периметрами. Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Два четырехугольника с одинаковыми периметрами. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Два четырехугольника с одинаковыми периметрами

Решение:

Два четырехугольника с одинаковыми периметрами(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Два четырехугольника с одинаковыми периметрами(АВ CD, ВС-секущая), Два четырехугольника с одинаковыми периметрами(ВС || AD, CD — секущая), Два четырехугольника с одинаковыми периметрами(АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Два четырехугольника с одинаковыми периметрами

Доказательство. Два четырехугольника с одинаковыми периметрамипо стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Два четырехугольника с одинаковыми периметрамикак внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Два четырехугольника с одинаковыми периметрами

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник — параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник — параллелограмм.

Два четырехугольника с одинаковыми периметрами

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Два четырехугольника с одинаковыми периметрамипо трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Два четырехугольника с одинаковыми периметрами Два четырехугольника с одинаковыми периметрамиУглы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие — параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD — не параллелограмм. Два четырехугольника с одинаковыми периметрами

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник — параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Два четырехугольника с одинаковыми периметрами

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Два четырехугольника с одинаковыми периметрамипо двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Два четырехугольника с одинаковыми периметрамикак внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Два четырехугольника с одинаковыми периметрамиНо углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Два четырехугольника с одинаковыми периметрами

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Два четырехугольника с одинаковыми периметрамипо двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Два четырехугольника с одинаковыми периметрамикак вертикальные. Из равенства треугольников следует: ВС= AD и Два четырехугольника с одинаковыми периметрамиНо углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник — параллелограмм.

Чтобы установить, что четырёхугольник — параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Два четырехугольника с одинаковыми периметрами

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и —у треугольники, можно разделить на виды. Прямоугольник — один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Два четырехугольника с одинаковыми периметрами

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник — частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Два четырехугольника с одинаковыми периметрами

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Два четырехугольника с одинаковыми периметрамиМожно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Два четырехугольника с одинаковыми периметрами. Два четырехугольника с одинаковыми периметрамипо трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Два четырехугольника с одинаковыми периметрами. Поскольку в параллелограмме противоположные углы равны, то: Два четырехугольника с одинаковыми периметрами. По свойству углов четырёхугольника, Два четырехугольника с одинаковыми периметрами

Следовательно, Два четырехугольника с одинаковыми периметрами: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм — прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, — это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Два четырехугольника с одинаковыми периметрами

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма — ромб.

Два четырехугольника с одинаковыми периметрами

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Два четырехугольника с одинаковыми периметрами

Дано: ABCD — ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Два четырехугольника с одинаковыми периметрами

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Два четырехугольника с одинаковыми периметрами. Два четырехугольника с одинаковыми периметрами

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Два четырехугольника с одинаковыми периметрами

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Два четырехугольника с одинаковыми периметрами(рис. 96). Докажем, что ABCD— ромб. Два четырехугольника с одинаковыми периметрамипо двум сторонами и углу между ними.

Два четырехугольника с одинаковыми периметрами

Так как ромб — это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Два четырехугольника с одинаковыми периметрамипо условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм — ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Два четырехугольника с одинаковыми периметрами

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник — это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Два четырехугольника с одинаковыми периметрами

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Два четырехугольника с одинаковыми периметрами

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Два четырехугольника с одинаковыми периметрами

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Два четырехугольника с одинаковыми периметрами

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Два четырехугольника с одинаковыми периметрамии Два четырехугольника с одинаковыми периметрамиПроведите с помощью чертёжного угольника и линейки через точки Два четырехугольника с одинаковыми периметрамипараллельные прямые, которые пересекут сторону ВС этого угла в точках Два четырехугольника с одинаковыми периметрамиПри помощи циркуля сравните длины отрезков Два четырехугольника с одинаковыми периметрамиСделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Доказать: Два четырехугольника с одинаковыми периметрами

Доказательство. Проведём через точки Два четырехугольника с одинаковыми периметрамипрямые Два четырехугольника с одинаковыми периметрамипараллельные ВС. Два четырехугольника с одинаковыми периметрамипо стороне и прилежащим к ней углам. У них Два четырехугольника с одинаковыми периметрамипо условию, Два четырехугольника с одинаковыми периметрамикак соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Два четырехугольника с одинаковыми периметрамии Два четырехугольника с одинаковыми периметрамикак противоположные стороны параллелограммов Два четырехугольника с одинаковыми периметрами

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Два четырехугольника с одинаковыми периметрами

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Два четырехугольника с одинаковыми периметрами

Отложим на луче АС пять равных отрезков: АА,Два четырехугольника с одинаковыми периметрамиПроведём прямую Два четырехугольника с одинаковыми периметрами. Через точки Два четырехугольника с одинаковыми периметрамипроведём прямые, параллельные прямой Два четырехугольника с одинаковыми периметрами. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN — средняя линия Два четырехугольника с одинаковыми периметрами, так как точки М и N — середины сторон АВ и ВС.

Два четырехугольника с одинаковыми периметрами

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Два четырехугольника с одинаковыми периметрами(рис. 122), AD = BD, СЕ= BE.

Два четырехугольника с одинаковыми периметрами

Доказать: Два четырехугольника с одинаковыми периметрами

Доказательство. 1) Пусть DE- средняя линия Два четырехугольника с одинаковыми периметрами. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Два четырехугольника с одинаковыми периметрами. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Два четырехугольника с одинаковыми периметрами

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Два четырехугольника с одинаковыми периметрами

Поэтому Два четырехугольника с одинаковыми периметрами. КР— средняя линия треугольника ADC. Поэтому КР || АС и Два четырехугольника с одинаковыми периметрами

Получаем: MN || АС и КР || АС, отсюда MN || КРДва четырехугольника с одинаковыми периметрами, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Два четырехугольника с одинаковыми периметрами

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами — параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие — АВ и CD — непараллельны. Такой четырёхугольник — трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Два четырехугольника с одинаковыми периметрами

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие — непараллельны.

Два четырехугольника с одинаковыми периметрами

Параллельные стороны трапеции называются её основаниями, а непараллельные — боковыми сторонами. На рисунке 144 AD и ВС — основания трапеции, АВ и CD — боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP — равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) — прямоугольная, поскольку Два четырехугольника с одинаковыми периметрами= 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF — средняя линия трапеции ABCD, так как точки Е и F — середины боковых сторон АВ и CD.

Два четырехугольника с одинаковыми периметрами

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD — трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Два четырехугольника с одинаковыми периметрамиno стороне и прилежащим к ней углам. У них CF = FD по условию, Два четырехугольника с одинаковыми периметрамикак вертикальные, Два четырехугольника с одинаковыми периметрамивнутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Два четырехугольника с одинаковыми периметрами

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Два четырехугольника с одинаковыми периметрамиравнобедренный. Поэтому Два четырехугольника с одинаковыми периметрамисоответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Два четырехугольника с одинаковыми периметрами

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Два четырехугольника с одинаковыми периметрами

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Два четырехугольника с одинаковыми периметрамиДва четырехугольника с одинаковыми периметрами

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Два четырехугольника с одинаковыми периметрами— вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Два четырехугольника с одинаковыми периметрами

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Два четырехугольника с одинаковыми периметрами. По свойству внешнего угла треугольника, Два четырехугольника с одинаковыми периметрамиДва четырехугольника с одинаковыми периметрами— равнобедренный (ОВ= OA = R). Поэтому Два четырехугольника с одинаковыми периметрамиизмеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Два четырехугольника с одинаковыми периметрами

Из доказанного в первом случае следует, что Два четырехугольника с одинаковыми периметрамиизмеряется половиной дуги AD, a Два четырехугольника с одинаковыми периметрами— половиной дуги DC. Поэтому Два четырехугольника с одинаковыми периметрамиизмеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Два четырехугольника с одинаковыми периметрами

Два четырехугольника с одинаковыми периметрами

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, — прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Два четырехугольника с одинаковыми периметрами

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Два четырехугольника с одинаковыми периметрамикак вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Два четырехугольника с одинаковыми периметрами, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Два четырехугольника с одинаковыми периметрами

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Два четырехугольника с одинаковыми периметрами(рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Два четырехугольника с одинаковыми периметрами(рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Два четырехугольника с одинаковыми периметрами

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Два четырехугольника с одинаковыми периметрами

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность — описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Два четырехугольника с одинаковыми периметрами

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность — вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Два четырехугольника с одинаковыми периметрами

Доказать: Два четырехугольника с одинаковыми периметрами

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Два четырехугольника с одинаковыми периметрами

Тогда Два четырехугольника с одинаковыми периметрами

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Два четырехугольника с одинаковыми периметрами

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник — вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Два четырехугольника с одинаковыми периметрами

Докажем, что Два четырехугольника с одинаковыми периметрами. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Два четырехугольника с одинаковыми периметрами. По свойству равнобокой трапеции, Два четырехугольника с одинаковыми периметрами

Тогда Два четырехугольника с одинаковыми периметрамии, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Два четырехугольника с одинаковыми периметрами

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Два четырехугольника с одинаковыми периметрами

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Два четырехугольника с одинаковыми периметрамицентры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Два четырехугольника с одинаковыми периметрамивписанного в окружность. Действительно,

Два четырехугольника с одинаковыми периметрами

Следовательно, четырёхугольник Два четырехугольника с одинаковыми периметрами— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Два четырехугольника с одинаковыми периметрами

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD — вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Два четырехугольника с одинаковыми периметрами

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.

Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎦 Видео

Площадь прямоугольника. Как найти площадь прямоугольника?Скачать

Площадь прямоугольника. Как найти площадь прямоугольника?

Математика 2 класс (Урок№49 - Периметр прямоугольника.)Скачать

Математика 2 класс (Урок№49 - Периметр прямоугольника.)

Как найти периметр?Скачать

Как найти периметр?

Периметр многоугольникаСкачать

Периметр многоугольника

Как различать периметр и площадь?Скачать

Как различать периметр и площадь?

Математика 2 класс. «Периметр треугольника, прямоугольника и квадрата»Скачать

Математика 2 класс. «Периметр треугольника, прямоугольника и квадрата»

КАК БЫСТРО НАЙТИ ПЕРИМЕТР И ПЛОЩАДЬ ПРЯМОУГОЛЬНИКА И КВАДРАТА ?Скачать

КАК БЫСТРО НАЙТИ ПЕРИМЕТР И ПЛОЩАДЬ ПРЯМОУГОЛЬНИКА И КВАДРАТА ?

Математика 2 класс (Урок№15 - Периметр многоугольника.)Скачать

Математика 2 класс (Урок№15 - Периметр многоугольника.)

№ 5.6. Периметр и площадь квадрата (дополнение)Скачать

№ 5.6. Периметр и площадь квадрата (дополнение)

Что важнее площадь или периметр?Скачать

Что важнее площадь или периметр?

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // ГеометрияСкачать

Все про ПАРАЛЛЕЛОГРАММ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия

#2 - Нахождение сторон прямоугольника по известным площади и периметруСкачать

#2 - Нахождение сторон прямоугольника по известным площади и периметру

Площадь фигурыСкачать

Площадь фигуры

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 классСкачать

Все про РОМБ за 8 минут: Свойства, Признаки, Формулы Периметра и Площади // Геометрия 8 класс
Поделиться или сохранить к себе: