Вектор электрического смещения его размерность

Вектор электрической индукции

Вектором электрической индукции (электрического смещения) D → называют физическую величину, определяемую по системе С И :

D → = ε 0 E → + P → , где ε 0 — электрическая постоянная, E → — вектор напряженности, P → — вектор поляризации.

Вектор электрического смещения в СНС определяется как:

Видео:44. Электрическое поле в диэлектрике. Вектор поляризованностиСкачать

44. Электрическое поле в диэлектрике. Вектор поляризованности

Вектор индукции

Значение вектора D → не является только полевым, потому как он учитывает поляризованность среды. Имеется связь с объемной плотностью заряда, выражаемая соотношением:

По уравнению d i v D → = ρ видно, что для D → единственным источником будут являться свободные заряды, на которых данный вектор начинается и заканчивается. В точках с отсутствующими свободными зарядами вектор электрической индукции является непрерывным. Изменения напряженности поля, вызванные наличием связанных зарядов, учитываются в самом векторе D → .

Видео:Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.Скачать

Поток вектора напряженности электрического поля. Теорема Гаусса. 10 класс.

Связь вектора напряженности и вектора электрического смещения

При наличии изотропной среды запись связи вектора напряженности и вектора электрического смещения запишется как:

D → = ε 0 E → + ε 0 χ E → = ε 0 + ε 0 χ E → = ε ε 0 E → .

Где ε – диэлектическая проницаемость среды.

Наличие D → способствует облегчению анализа поля при наличии диэлектрика. Используя теорему Остроградского-Гаусса в интегральном виде с диэлектриком, фиксируется как:

Проходя через границу разделов двух диэлектриков для нормальной составляющей, вектор D → может быть записан:

D 2 n — D 1 n = σ

n 2 → D 2 → — D 1 → = σ ,

где σ – поверхностная плотность распределения зарядов на границе диэлектриков, n 2 → — нормаль, проведенная в сторону второй среды.

Формула тангенциальной составляющей:

D 2 τ = ε 2 ε 1 D 1 τ .

Единица вектора электрической индукции измеряется в системе С И как К л м 2 .

Поле вектора D → изображается при помощи линий электрического смещения.

Определение направления и густоты идет аналогично линиям вектора напряженности. Но линии вектора электрической индукции начинаются и заканчиваются только на свободных зарядах.

Имеются пластины плоского конденсатора с зарядом q . Произойдет ли изменение вектора электрической индукции при заполненном воздухом пространстве между пластинами и диэлектрика с диэлектрической проницаемостью ε ≠ ε υ o z d .

Поле конденсатора в первом случае характеризовалось вектором смещения ε v o z d = 1 , то есть D 1 → = ε v o z d ε 0 E 1 → = ε 0 E 1 → .

Необходимо заполнить пространство между пластинами конденсатора однородным и изотропным диэлектриком. При наличии поля в конденсаторе диэлектрик поляризуется. Тогда начинают появляться связанные заряды с плотностью σ s υ на его поверхности. Создается дополнительное поле с напряженностью:

Векторы полей E → ‘ и E 1 → имеют противоположные направления, причем:

Запись результирующего поля с диэлектриком примет вид:

E = E 1 — E ‘ = σ ε 0 — σ s υ ε 0 = 1 ε 0 σ — σ s υ .

Формула плотности связанных зарядов:

Произведем подстановку σ s υ = χ ε 0 E в E = E 1 — E ‘ = σ ε 0 — σ s υ ε 0 = 1 ε 0 σ — σ s υ , тогда:

Далее выражаем из ( 1 . 6 ) напряженность поля Е . Формула принимает вид:

E = E 1 1 + χ = E 1 ε .

Отсюда следует, что значение вектора электрической индукции в диэлектрике равняется:

D = ε ε 0 E 1 ε = ε 0 E 1 = D 1 .

Ответ: вектор электрической индукции не изменяется.

Была внесена пластина из диэлектрика с диэлектрической проницаемостью ε без свободных зарядов в зазор между разноименными заряженными пластинами. На рисунке 1 показана при помощи штриховой линии замкнутая поверхность. Определить поток электрической индукции Φ D через эту поверхность.

Вектор электрического смещения его размерность

Рисунок 1 . Замкнутая поверхность

Формула записи потока вектора электрического смещения Φ D через замкнутую поверхность S :

Φ D = ∫ S D → · d S → .

Используя теорему Остроградского-Гаусса, можно сказать, что Φ D равняется суммарному свободному заряду, находящемуся внутри заданной поверхности. Из условия видно отсутствие свободных зарядов в диэлектрике и в имеющемся пространстве между пластинами конденсатора, а поток вектора индукции равняется нулю.

Изображена замкнутая поверхность S , проходящая с захватом части пластины изотропного диэлектрика на рисунке 2 . Поток вектора электрической индукции через нее равняется нулю, а поток вектора напряженности > 0 . Какой вывод можно сделать из данной задачи?

Вектор электрического смещения его размерность

Рисунок 2 . Замкнутая поверхность с захватом части пластины изотропного диэлектрика

Из условия имеем, что поток вектора электрического смещения Φ D через замкнутую поверхность равняется нулю, то есть:

Если использовать теорему Остроградского-Гаусса, то значение Φ D – это суммарный свободный заряд, находящийся внутри заданной поверхности. Следует, что внутри такой поверхности отсутствуют свободные заряды:

Φ D = ∫ S D → · d S → = Q = 0 .

Имеем, что поток вектора напряженности не равен нулю, но он считается как сумма свободных и связанных зарядов. Отсюда вывод – диэлектрик содержит связанный заряды.

Ответ: свободные заряды отсутствуют, а связанные есть, причем с положительной их суммой.

Видео:45. Электрическое смещениеСкачать

45. Электрическое смещение

3.4. Вектор электрического смещения

Разобравшись с поведением диэлектрика на микроскопическом уровне, вернемся к плоскому конденсатору, изображенному на рис. 3.3. Откуда же взялись поляризационные заряды на поверхности диэлектрической пластины между обкладками?

Теперь мы знаем, что во внешнем поле, создаваемом обкладками, единица объема диэлектрика приобретает дипольный момент Р. Скажем, положительные заряды смещаются по направлению поля (вверх на рис. 3.3), а отрицательные — вниз. При полной однородности поля и диэлектрика объемные нескомпенсированные заряды внутри диэлектрика не появляются. Но такой сдвиг приводит к возникновению нескомпенсированных зарядов на поверхности диэлектрической пластины. Дипольный момент пластины равен VР, где V = Sd — ее объем. С другой стороны, полный поверхностный заряд на пластине равен

Вектор электрического смещения его размерность

а расстояние между центрами положительных и отрицательных зарядов равно d (см. рис. 3.3). Поэтому дипольный момент пластины можно также записать как

Вектор электрического смещения его размерность

Сравнивая эти два выражения, находим связь поверхностной плотности поляризационных зарядов с вектором поляризации

Вектор электрического смещения его размерность

Напряженность Е суммарного поля внутри диэлектрика меньше напряженности поля E0, создаваемого обкладками. Именно поле Е действует на молекулы диэлектрика, именно его они «чувствуют», и потому для него справедливо соотношение (3.22)

Вектор электрического смещения его размерность

Используя связь (3.3) напряженности поля Е ‘ поляризационных зарядов с суммарным полем Е

Вектор электрического смещения его размерность

мы находим связь между диэлектрической проницаемостью и диэлектрической восприимчивостью

Вектор электрического смещения его размерность

В общем случае вектор поляризации Р не параллелен вектору напряженности суммарного поля Е: в анизотропных диэлектриках вектор поляризации может поворачиваться относительно напряженности поля. Однако всегда мы можем записать соотношение

Вектор электрического смещения его размерность

Вектор электрического смещения его размерность

называется вектором электрического смещения (вектором электрической индукции).

В частном случае линейной зависимости поляризации от напряженности поля

Вектор электрического смещения его размерность

вектор электрического смещения равен

Вектор электрического смещения его размерность

где Вектор электрического смещения его размерностьдиэлектрическая проницаемость среды. Соотношение

Вектор электрического смещения его размерность

имеет место для изотропных диэлектриков. В общем случае вектор D не параллелен Е. Поле вектора D можно графически изобразить линиями электрического смещения, которые определяются так же, как и линии напряженности электрического поля (рис 3.23 и 3.24).

Вектор электрического смещения его размерность

Вектор электрического смещения его размерность

Вектор электрического смещения его размерностьВектор электрического смещения его размерность

Рис. 3.23. Условия на плоской границе двух диэлектриков для напряженности и электрического смещения

Вектор электрического смещения его размерность

Рис. 3.24. Линии напряженности и электрического смещения электрического поля
от точечного заряда, расположенного на границе раздела двух диэлектриков

В СИ единицей измерения электрического смещения является:

Видео:Что такое "ток смещения"?Скачать

Что такое "ток смещения"?

Вектор электрической индукции

Вы будете перенаправлены на Автор24

Видео:Лекция 237. Вектор электрической индукцииСкачать

Лекция 237.  Вектор электрической индукции

Что такое вектор электрической индукции

Вектором электрической индукции (или вектором электрического смещения) ($overrightarrow$) называют физическую величину, которая определяется в системе СИ как:

где $_0$ — электрическая постоянная, $overrightarrow$ — вектор напряженность, $overrightarrow

$ — вектор поляризации.

В СГС вектор электрического смещения определен как:

[overrightarrow=overrightarrow+4pi overrightarrow

left(2right).]

Вектор $overrightarrow$ не является чисто полевым вектором, так как он учитывает поляризованность среды. Этот вектор связан с объемной плотностью заряда соотношением:

Из (3) мы видим, что единственным источником $overrightarrow$ являются свободные заряды, на которых данный вектор начинается и заканчивается. В точках, где свободные заряды отсутствуют, вектор электрической индукции непрерывен. Изменение напряженности поля, которые вызваны наличием связанных зарядов, учитываются в самом векторе $overrightarrow$.

Видео:Билет №02 "Теорема Гаусса"Скачать

Билет №02 "Теорема Гаусса"

Связь вектора напряженности и вектора электрического смещения

Связь вектора напряженности и вектора электрического смещения, если среда изотропна, еще можно записать как:

[overrightarrow=left(_0overrightarrow+_0varkappa overrightarrowright)=left(_0+_0varkappa right)overrightarrow=varepsilon _0overrightarrowleft(4right),]

Использование вектора $overrightarrow$ существенно облегчает анализ поля при наличии диэлектрика. Так, например теорема Остроградского — Гаусса в интегральном виде при наличии диэлектрика может быть записана как:

При переходе через границу раздела двух диэлектриков для нормальной составляющей вектора $overrightarrow$ можно записать:

где $sigma $ — поверхностная плотность распределения зарядов на границе диэлектриков. $overrightarrow$ — нормаль, которая проведена в сторону второй среды.

Для тангенциальной составляющей:

Единицей измерения в системе СИ вектора электрической индукции служит $frac.$

Поле вектора $overrightarrow$ можно изображать с помощью линий электрического смещения. Направление и густота определяются аналогично линиям вектора напряженности. Однако в отличие от вектора $overrightarrow$ линии вектора электрической индукции начинаются и заканчиваются только на свободных зарядах.

Задание: Пластины плоского конденсатора имеют заряд q. Как изменится вектор электрической индукции, если пространство между пластинами сначала было заполнено воздухом, а за тем диэлектриком с диэлектрической проницаемостью $varepsilon ne _$.

Пусть поле в конденсаторе в первом случае характеризуется вектором смещения ($_=1$):

Заполним пространство между пластинами конденсатора однородным и изотропным диэлектриком. Под действием поля в конденсаторе диэлектрик поляризуется. На его поверхности появляются связанные заряды с плотностью ($_$). Они создают дополнительное поле, напряженность которого равна:

Векторы поля $overrightarrow$ и $overrightarrow$ направлены в противоположные стороны, при чем:

Результирующее поле в присутствии диэлектрика можно записать как:

Зная, что плотность связанных зарядов можно найти как:

Подставим (1.5) в (1.4), получим:

[E=E_1-varkappa E left(1.6right).]

Выразим из (1.6) напряженность поля E, получим:

Следовательно, вектор электрической индукции в диэлектрике равен:

Ответ: Вектор электрической индукции не изменится.

Готовые работы на аналогичную тему

Задание: В зазор между разноименно заряженными пластинами внесли пластину из диэлектрика с диэлектрической проницаемостью $varepsilon$, которая не несет свободных зарядов. Штриховой линией на рисунке изображена замкнутая поверхность (рис.1). Чему равен поток вектора электрической индукции ($Ф_D$) через эту поверхность?

Вектор электрического смещения его размерность

Поток вектора электрического смещения ($Ф_D$) через замкнутую поверхность $S$ равен:

С другой стороны по теореме Остроградского — Гаусса $Ф_D$ равен суммарному свободному заряду, который находится внутри заданной поверхности. По условию нашей задачи свободных зарядов в диэлектрике и в пространстве между пластинами конденсатора, которое не занято диэлектриком свободных зарядов нет, следовательно, поток вектора электрической индукции равен нулю.

Задание: На рисунке 2 изображена замкнутая поверхность $S$ которая проходит так, что захватывает часть пластины изотропного диэлектрика. При этом известно, что поток вектора электрической индукции через эту поверхность равен нулю, а поток вектора напряженности больше нуля. Какие выводы можно сделать?

Вектор электрического смещения его размерность

Если по условию задачи, поток вектора электрического смещения ($Ф_D$) через замкнутую поверхность равен нулю:

а он по теореме Остроградского — Гаусса $Ф_D$ равен суммарному свободному заряду, который находится внутри заданной поверхности, следовательно, то внутри этой поверхности нет свободных зарядов:

Но при этом сказано, что отличен от нуля поток вектора напряженности, но его поток равен сумме зарядов и свободных и связанных, следовательно, в диэлектрике присутствуют связанные заряды.

Ответ: Свободных зарядов нет, связанные заряды есть и их сумма положительна.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 04 12 2022

📺 Видео

Билет №31 "Ток смещения"Скачать

Билет №31 "Ток смещения"

Урок 383. Вихревое электрическое поле. Ток смещенияСкачать

Урок 383. Вихревое электрическое поле. Ток смещения

Диэлектрики в электрическом поле. 10 класс.Скачать

Диэлектрики в электрическом поле. 10 класс.

Урок 222. Поток вектора напряженности электрического поляСкачать

Урок 222. Поток вектора напряженности электрического поля

1.1 Векторы напряженности и индукции электрического и магнитного полейСкачать

1.1 Векторы напряженности и индукции электрического и магнитного полей

Урок 223. Теорема ГауссаСкачать

Урок 223. Теорема Гаусса

Лекция 4-5 Доказательство теоремы Гаусса для вектора поляризацииСкачать

Лекция 4-5 Доказательство теоремы Гаусса для вектора поляризации

Билет №06-08 "Диэлектрики"Скачать

Билет №06-08 "Диэлектрики"

2.5 Граничные условия для векторов поля на поверхности раздела средСкачать

2.5 Граничные условия для векторов поля на поверхности раздела сред

Вектор Умова-Пойнтинга ● 1Скачать

Вектор Умова-Пойнтинга ● 1

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.Скачать

Электрическое поле. Напряженность электрического поля. Силовые линии электрического поля. 10 класс.

Урок 228. Диэлектрики в электрическом поле. Диэлектрическая проницаемостьСкачать

Урок 228. Диэлектрики в электрическом поле. Диэлектрическая проницаемость

Стрим с Борисом Надеждиным, Екатериной Дунцовой и Дмитрием КисиевымСкачать

Стрим с Борисом Надеждиным, Екатериной Дунцовой и Дмитрием Кисиевым

Диэлектрик в электрическом полеСкачать

Диэлектрик в электрическом поле
Поделиться или сохранить к себе: