Вектор через длину и угол

Сложение векторов: длина суммы векторов и теорема косинусов

Видео:Угол между векторами | МатематикаСкачать

Угол между векторами | Математика

Определения скалярного произведения векторов через угол между ними

Сложение векторов по правилу треугольника (суммой векторов Вектор через длину и уголи Вектор через длину и уголназывается вектор Вектор через длину и угол, начало которого совпадает с началом вектора Вектор через длину и угол, а конец — с концом вектора Вектор через длину и угол, при условии, что начало вектора Вектор через длину и уголприложено к концу вектора Вектор через длину и угол) даёт возможность упрощать выражение перед вычислением произведений векторов.

Сложение векторов, заданных координатами (при сложении одноимённые координаты складываются) даёт возможность узнать, как расположен относительно начала координат вектор, являющийся суммой слагаемых векторов. Подробно эти две операции разбирались на уроке «Векторы и операции над векторами».

Теперь же нам предстоит узнать, как найти длину вектора, являющегося результатом сложения векторов. Для этого потребуется использовать теорему косинусов. Такую задачу приходится решать, например, когда дорога из пункта A в пункт С — не прямая, а отклоняется от прямой, чтобы пройти ещё через какой-то пункт B, а нужно узнать длину предполагаемой прямой дороги. Кстати, геодезия — одна из тех сфер деятельности, где тригонометрические функции применяются во всех их полноте.

Вектор через длину и угол

При сложении векторов для нахождения длины суммы векторов используется теорема косинусов. Пусть Вектор через длину и уголи Вектор через длину и угол— векторы, Вектор через длину и угол— угол между ними, а Вектор через длину и угол— сумма векторов как результат сложения векторов по правилу треугольника. Тогда верно следующее соотношение:

Вектор через длину и угол,

где Вектор через длину и угол— угол, смежный с углом Вектор через длину и угол. У смежных углов одна сторона общая, а другие стороны лежат на одной прямой (см. рисунок выше).

Поэтому для сложения векторов и определения длины суммы векторов нужно извлечь квадратный корень из каждой части равенства, тогда получится формула длины:

Вектор через длину и угол.

В случае вычитания векторов (Вектор через длину и угол) происходит сложение вектора Вектор через длину и уголс вектором Вектор через длину и угол, противоположным вектору Вектор через длину и угол, то есть имеющим ту же длину, но противоположным по направлению. Углы между и Вектор через длину и уголи Вектор через длину и уголи между Вектор через длину и уголи Вектор через длину и уголявляются смежными углами, у них, как уже было отмечено, одна сторона общая, а другие стороны лежат на одной прямой. В случае вычитания векторов для нахождения длины разности векторов нужно знать следующее свойство косинусов смежных углов:

косинусы смежных углов равны по абсолютной величине (величине по модулю), но имеют противоположные знаки.

Перейдём к примерам.

Видео:Нахождение угла между векторами через координаты. 9 класс.Скачать

Нахождение угла между векторами  через координаты. 9 класс.

Сложение векторов — решение примеров

Пример 1. Векторы Вектор через длину и уголи Вектор через длину и уголобразуют угол Вектор через длину и угол. Их длины: Вектор через длину и уголи Вектор через длину и угол. Выполнить сложение векторов и найти их сумму Вектор через длину и угол. Выполнить вычитание векторов и найти их разность Вектор через длину и угол.

Решение. Из элементарной тригонометрии известно, что Вектор через длину и угол.

Шаг 1. Выполняем сложение векторов. Находим длину суммы векторов, поставляя в формулу длины косинус угла, смежного с углом между векторами:

Вектор через длину и угол

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Вектор через длину и угол

Выполнить сложение и вычитание векторов самостоятельно, а затем посмотреть решение

Пример 2. Векторы Вектор через длину и уголи Вектор через длину и уголобразуют угол Вектор через длину и угол. Их длины: Вектор через длину и уголи Вектор через длину и угол. Выполнить сложение векторов и найти их сумму Вектор через длину и угол. Выполнить вычитание векторов и найти их разность Вектор через длину и угол.

Пример 3. Даны длины векторов Вектор через длину и уголи длина их суммы Вектор через длину и угол. Найти длину их разности Вектор через длину и угол.

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус угла, смежного с углом между векторами и находим его:

Вектор через длину и угол

Не забываем, что косинус смежного угла получился со знаком минус. Это значит, что косинус «изначального» угла будет со знаком плюс.

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Вектор через длину и угол

Пример 4. Даны длины векторов Вектор через длину и уголи длина их разности Вектор через длину и угол. Найти длину их суммы Вектор через длину и угол.

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус «изначального» угла (задача обратная по отношению к примеру 1) и находим его:

Вектор через длину и угол

Шаг 2. Меняем знак косинуса и получаем косинус смежного угла между Вектор через длину и уголи Вектор через длину и угол:

Вектор через длину и угол

Шаг 3. Выполняем сложение векторов. Находим длину суммы векторов, подставляя в формулу косинус смежного угла:

Вектор через длину и угол

Пример 5. Векторы Вектор через длину и уголи Вектор через длину и уголвзаимно перпендикулярны, а их длины Вектор через длину и угол. Найти длину их суммы Вектор через длину и уголи и длину их разности Вектор через длину и угол.

Два смежных угла, как нетрудно догадаться из приведённого в начале урока определения, в сумме составляют 180 градусов. Следовательно, смежный с прямым углом (90 градусов) угол — тоже прямой (тоже 90 градусов). Косинус такого угла равен нулю, то же самое относится и к косинусу смежного угла. Поэтому, подставляя это значение в выражения под корнем в формуле длины суммы и разности векторов, получаем нули как последние выражения — произведения под знаком корня. То есть длины суммы и разности данных векторов равны, вычисляем их:

Вектор через длину и угол

Пример 6. Какому условию должны удовлетворять векторы Вектор через длину и уголи Вектор через длину и угол, чтобы имели место слелующие соотношения:

1) длина суммы векторов равна длине разности векторов, т. е. Вектор через длину и угол,

2) длина суммы векторов больше длины разности векторов, т. е. Вектор через длину и угол,

3) длина суммы векторов меньше длины разности векторов, т. е. Вектор через длину и угол?

Находим условие для первого соотношения. Для этого решаем следующее уравнение:

Вектор через длину и угол

То есть, для того, чтобы длина суммы векторов была равна длине их разности, необходимы, чтобы косинус угла между ними и косинус смежного ему угла были равны. Это условие выполняется, когда углы образуют прямой угол.

Находим условие для второго соотношения. Решаем уравнение:

Вектор через длину и угол

Найденное условие выполняется, когда косинус угла между векторами меньше косинуса смежных углов. То есть, чтобы длина суммы векторов была больше длины разности векторов, необходимо, чтобы углы образовали острый угол (пример 1).

Находим условие для третьего соотношения. Решаем уравнение:

Вектор через длину и угол

Найденное условие выполняется, когда косинус угла между векторами больше косинуса смежных углов. То есть, чтобы длина суммы векторов была меньше длины разности векторов, необходимо, чтобы углы образовали тупой угол.

Видео:Угол между векторами. 9 класс.Скачать

Угол между векторами. 9 класс.

Скалярное произведение векторов

Вектор через длину и угол

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Вектор. Сложение и вычитание. 9 класс | МатематикаСкачать

Вектор. Сложение и вычитание. 9 класс | Математика

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Вектор через длину и угол

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Видео:Скалярное произведение векторов. 9 класс.Скачать

Скалярное произведение векторов. 9 класс.

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

Вектор через длину и угол

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Вектор через длину и угол

Также векторы могут образовывать тупой угол. Это выглядит так:

Вектор через длину и угол

Видео:Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)Скачать

Геометрия 9 класс (Урок№18 - Угол между векторами. Скалярное произведение векторов.)

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.

Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

→a * →b = →|a| * →|b| * cosα

Вектор через длину и угол

  • Алгебраическая интерпретация.
  • Что важно запомнить про геометрическую интерпретацию скалярного произведения:

    • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0. Вектор через длину и угол
    • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα

    Видео:18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.Скачать

    18+ Математика без Ху!ни. Скалярное произведение векторов. Угол между векторами.

    Скалярное произведение в координатах

    Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

    Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

    То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

    А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

    Докажем это определение:



      Сначала докажем равенства
      Вектор через длину и угол

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB — →OA = →b — →a = (bx — ax, by — ay)

    Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:
    Вектор через длину и угол

    Вектор через длину и угол

    то последнее равенство можно переписать так:

    Вектор через длину и угол

    а по первому определению скалярного произведения имеем

    Вектор через длину и угол

    Вектор через длину и угол

  • Вспомнив формулу вычисления длины вектора по координатам, получаем
    Вектор через длину и угол
  • Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
  • Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
  • Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!

    Видео:Нахождение длины вектора через координаты. Практическая часть. 9 класс.Скачать

    Нахождение длины вектора через координаты. Практическая часть. 9 класс.

    Формулы скалярного произведения векторов заданных координатами

    Формула скалярного произведения векторов для плоских задач

    В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by

    Формула скалярного произведения векторов для пространственных задач

    В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by + az * bz

    Формула скалярного произведения n-мерных векторов

    В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = a1 * b1 + a2 * b2 + . + an * bn

    Видео:Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnlineСкачать

    Урок 3. Произведение векторов и загадочный угол между векторами. Высшая математика | TutorOnline

    Свойства скалярного произведения

    Свойства скалярного произведения векторов:



      Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →0 * →0 = 0

    Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2

    Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a

    Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c

    Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)

    Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

    Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

    Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

    По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

    Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

    Аналогично доказываются остальные свойства скалярного произведения.

    Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

    Вектор через длину и угол

    Вектор через длину и угол

    Вектор через длину и угол

    Видео:Нахождение длины вектора. Практическая часть. 9 класс.Скачать

    Нахождение длины вектора. Практическая часть. 9 класс.

    Примеры вычислений скалярного произведения

    Пример 1.

    Вычислите скалярное произведение двух векторов →a и →b, если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.

    У нас есть все данные, чтобы вычислить скалярное произведение по определению:

    (→a,→b) = →|a| * →|b| * cos(→a,→b) = 3 * 7 cos60° = 3 * 7 * 1/2 = 21/2 = 10,5.

    Ответ: (→a,→b) = 21/2 = 10,5.

    Пример 2.

    Найти скалярное произведение векторов →a и →b, если →|a| = 2, →|b| = 5, ∠(→a,→b) = π/6.

    Используем формулу →a * →b = →|a| * →|b| * cosα.

    В данном случае:

    →a * →b = →|a| * →|b| * cosα = 2 * 5 * cosπ/6 = 10 * √3/2 = 5√3

    Пример 3.

    Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.

    Вектор через длину и угол

    По свойству дистрибутивности скалярного произведения имеем

    Вектор через длину и угол

    Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:

    Вектор через длину и угол

    В силу свойства коммутативности последнее выражение примет вид

    Вектор через длину и угол

    Итак, после применения свойств скалярного произведения имеем

    Вектор через длину и угол

    Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:

    Вектор через длину и угол

    Пример 4.

    В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.

    Вектор через длину и угол



      Введем систему координат.
      Вектор через длину и угол

    Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.

    Вектор через длину и угол

  • Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
  • Найдем координаты векторов →AB1 и →BC1:
    Вектор через длину и угол
  • Найдем длины векторов →AB1 и →BC1:
    Вектор через длину и угол
  • Найдем скалярное произведение векторов →AB1 и →BC1:
    Вектор через длину и угол
  • Найдем косинус угла между прямыми AB1 и BC1:
    Вектор через длину и угол
  • Пример 5.

    а) Проверить ортогональность векторов: →a(1; 2; -4) и →b(6; -1; 1) .

    б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).

    а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно

    Вектор через длину и угол

    б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)

    Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.

    Обратите внимание на два существенных момента:

    • В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
    • В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.

    Ответ: а) →a перпендикулярно →b, б) отрезки KL, MN не перпендикулярны.

    Пример 6.

    Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.

    По условию чертеж выполнять не требуется, но для удобства можно сделать:

    Вектор через длину и угол

    Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.

    Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).

    Вектор через длину и угол

    Вычислим скалярное произведение:

    Вектор через длину и угол

    Вычислим длины векторов:

    Вектор через длину и угол

    Найдем косинус угла:

    Вектор через длину и угол

    Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:

    Вектор через длину и угол

    Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

    Найдём сам угол:

    Вектор через длину и угол

    Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.

    Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°

    Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.

    А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.

    Видео:Построение проекции вектора на осьСкачать

    Построение проекции вектора на ось

    Нахождение угла между векторами

    Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

    Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

    Углом между векторами a → и b → называется угол между лучами О А и О В .

    Полученный угол будем обозначать следующим образом: a → , b → ^

    Вектор через длину и угол

    Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

    a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

    Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

    Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

    Видео:Длина вектора через координаты. 9 класс.Скачать

    Длина вектора через координаты. 9 класс.

    Нахождение угла между векторами

    Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

    Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

    Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

    cos a → , b → ^ = a → , b → a → · b →

    Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

    Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно — 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

    Решение

    Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = — 9 3 · 6 = — 1 2 ,

    Теперь определим угол между векторами: a → , b → ^ = a r c cos ( — 1 2 ) = 3 π 4

    Ответ: cos a → , b → ^ = — 1 2 , a → , b → ^ = 3 π 4

    Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

    Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

    cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

    А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

    Исходные данные: векторы a → = ( 2 , 0 , — 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

    Решение

    1. Для решения задачи можем сразу применить формулу:

    cos a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 2 2 + 0 2 + ( — 1 ) 2 · 1 2 + 2 2 + 3 2 = — 1 70 ⇒ a → , b → ^ = a r c cos ( — 1 70 ) = — a r c cos 1 70

    1. Также можно определить угол по формуле:

    cos a → , b → ^ = ( a → , b → ) a → · b → ,

    но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( — 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( — 1 ) · 3 = — 1 cos a → , b → ^ = a → , b → ^ a → · b → = — 1 5 · 14 = — 1 70 ⇒ a → , b → ^ = — a r c cos 1 70

    Ответ: a → , b → ^ = — a r c cos 1 70

    Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

    Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , — 1 ) , B ( 3 , 2 ) , C ( 7 , — 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

    Решение

    Найдем координаты векторов по координатам заданных точек A C → = ( 7 — 2 , — 2 — ( — 1 ) ) = ( 5 , — 1 ) B C → = ( 7 — 3 , — 2 — 2 ) = ( 4 , — 4 )

    Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( — 1 ) · ( — 4 ) 5 2 + ( — 1 ) 2 · 4 2 + ( — 4 ) 2 = 24 26 · 32 = 3 13

    Ответ: cos A C → , B C → ^ = 3 13

    Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

    A B 2 = O A 2 + O B 2 — 2 · O A · O B · cos ( ∠ A O B ) ,

    b → — a → 2 = a → + b → — 2 · a → · b → · cos ( a → , b → ) ^

    и отсюда выведем формулу косинуса угла:

    cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 — b → — a → 2 a → · b →

    Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

    Хотя указанный способ имеет место быть, все же чаще применяют формулу:

    📽️ Видео

    Математика без Ху!ни. Угол между векторами, применение скалярного произведения.Скачать

    Математика без Ху!ни. Угол между векторами, применение скалярного произведения.

    Как находить угол между векторамиСкачать

    Как находить угол между векторами

    Векторы. Метод координат. Вебинар | МатематикаСкачать

    Векторы. Метод координат. Вебинар | Математика

    §7 Направляющие косинусы вектораСкачать

    §7 Направляющие косинусы вектора

    100 тренировочных задач #135 Угол между векторамиСкачать

    100 тренировочных задач #135 Угол между векторами

    найти угол между единичными векторамиСкачать

    найти угол между единичными векторами

    МОДУЛЬ ВЕКТОРА длина вектора 10 и 11 классСкачать

    МОДУЛЬ ВЕКТОРА длина вектора 10 и 11 класс

    9 класс, 17 урок, Угол между векторамиСкачать

    9 класс, 17 урок, Угол между векторами
    Поделиться или сохранить к себе: