Через точку а проведены окружности касательная ак и секущая

Через точку А проведены к окружности касательная АК (К— точка касания) и секущая, пересекающая окружность в точках Е и F(рис. 27).
Содержание
  1. Ваш ответ
  2. Похожие вопросы
  3. Касательная к окружности
  4. Касательная к окружности, секущая и хорда — в чем разница
  5. Свойства касательной к окружности
  6. Задача
  7. Задача 1
  8. Задача 2
  9. Задача 1
  10. Задача 2
  11. Задача 1
  12. Задача 2
  13. Через точку а проведены к окружности касательная ам
  14. Через точку А проведены к окружности касательная AM (М — точка касания) и секущая, которая пересекает окружность в точках
  15. Ваш ответ
  16. Похожие вопросы
  17. Через точку А проведены к окружности касательная АМ ( М — точка касания) и секущая, которая пересекает окружность в точках К и Р (точка К лежит между точками А и Р)?
  18. Через конец в диаметра ав проведена секущая которая пересекается в точке д с касательной проведенной через точку а секущая вд пересекается с окружностью в точке с и делится пополам радиус окружности р?
  19. Через точку А проведены касательная АВ (В – точка касания) и секущая, которая пересекает окружность в точках P и Q?
  20. Пожалуйста помогите решить очень нужно?
  21. Через точку А проведены касательная AB ( B — точка касания) и секущая, пересекающая окружность С и K так, что AC = 4см, AK = 16?
  22. Объясните, пожалуйста?
  23. К окружности с центром в точке O проведена касательная AB (B — точка касания)?
  24. Через точку А к окружности проведена касательная АВ(В — точка касания) и секущая, которая пересекает окружность в точках К и М?
  25. Из точки А не лежащей на окружности, проведены к ней касательная и секущая?
  26. Через точку А проведины касательная АВ ( В точка касания ) и секущая которая пересекает окружность в точках С и D?
  27. Из точки А , не лежащей на окружности проведены к ней касательная и секущая?
  28. Касательная к окружности
  29. Касательная к окружности, секущая и хорда — в чем разница
  30. Свойства касательной к окружности
  31. Задача
  32. Задача 1
  33. Задача 2
  34. Задача 1
  35. Задача 2
  36. Задача 1
  37. Задача 2

Видео:№658. Через точку А к данной окружности проведены касательная АВ (В — точка касания) и секущая ADСкачать

№658. Через точку А к данной окружности проведены касательная АВ (В — точка касания) и секущая AD

Ваш ответ

Видео:№670. Через точку А проведены касательные АВ (В — точка касания) и секущая, которая пересекаетСкачать

№670. Через точку А проведены касательные АВ (В — точка касания) и секущая, которая пересекает

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,049
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:№671. Через точку А проведены касательная АВ (В — точка касания) и секущая, которая пересекаетСкачать

№671. Через точку А проведены касательная АВ (В — точка касания) и секущая, которая пересекает

Касательная к окружности

Через точку а проведены окружности касательная ак и секущая

О чем эта статья:

Видео:ОГЭ за одну минуту | ОГЭ, математика, задание 16 (окружность и касательная)Скачать

ОГЭ за одну минуту | ОГЭ, математика, задание 16 (окружность и касательная)

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Через точку а проведены окружности касательная ак и секущая

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Через точку а проведены окружности касательная ак и секущая

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Видео:8 класс, 32 урок, Касательная к окружностиСкачать

8 класс, 32 урок, Касательная к окружности

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Через точку а проведены окружности касательная ак и секущая

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Через точку а проведены окружности касательная ак и секущая

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Через точку а проведены окружности касательная ак и секущая

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Через точку а проведены окружности касательная ак и секущая

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Через точку а проведены окружности касательная ак и секущая

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Через точку а проведены окружности касательная ак и секущая

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Через точку а проведены окружности касательная ак и секущая

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Через точку а проведены окружности касательная ак и секущая

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Через точку а проведены окружности касательная ак и секущая

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Через точку а проведены окружности касательная ак и секущая

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Видео:№640. Даны окружность с центром О радиуса 4,5 см и точка А. Через точку А проведены две касательныеСкачать

№640. Даны окружность с центром О радиуса 4,5 см и точка А. Через точку А проведены две касательные

Через точку а проведены к окружности касательная ам

Видео:Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачи

Через точку А проведены к окружности касательная AM (М — точка касания) и секущая, которая пересекает окружность в точках

Видео:Геометрия Через точку A проведены к окружности касательная AM (M – точка касания) и секущаяСкачать

Геометрия Через точку A проведены к окружности касательная AM (M – точка касания) и секущая

Ваш ответ

Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Похожие вопросы

  • Все категории
  • экономические 43,282
  • гуманитарные 33,619
  • юридические 17,900
  • школьный раздел 607,013
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Видео:Геометрия Докажите, что если через точку A к окружности проведены касательная AM (M – точка касания)Скачать

Геометрия Докажите, что если через точку A к окружности проведены касательная AM (M – точка касания)

Через точку А проведены к окружности касательная АМ ( М — точка касания) и секущая, которая пересекает окружность в точках К и Р (точка К лежит между точками А и Р)?

Геометрия | 5 — 9 классы

Через точку А проведены к окружности касательная АМ ( М — точка касания) и секущая, которая пересекает окружность в точках К и Р (точка К лежит между точками А и Р).

Найдите КР, если АМ = 12 см, АР = 18 см.

Через точку а проведены окружности касательная ак и секущая

AM ^ 2 = AK * AP, 12 ^ 2 = AK * 18, AK = 144 : 18 = 8, тогда KP = AP — AK = 18 — 8 = 10.

Через точку а проведены окружности касательная ак и секущая

Видео:через точку А, лежащую вне окружности проведены две прямые. Одна прямая касается.. ФИПИСкачать

через точку А, лежащую вне окружности проведены две прямые. Одна прямая касается.. ФИПИ

Через конец в диаметра ав проведена секущая которая пересекается в точке д с касательной проведенной через точку а секущая вд пересекается с окружностью в точке с и делится пополам радиус окружности р?

Через конец в диаметра ав проведена секущая которая пересекается в точке д с касательной проведенной через точку а секущая вд пересекается с окружностью в точке с и делится пополам радиус окружности равен 3 найдите длину ад.

Через точку а проведены окружности касательная ак и секущая

Видео:Пойми Этот Урок Геометрии и получай 5-ки — Касательная и ОкружностьСкачать

Пойми Этот Урок Геометрии и получай 5-ки — Касательная и Окружность

Через точку А проведены касательная АВ (В – точка касания) и секущая, которая пересекает окружность в точках P и Q?

Через точку А проведены касательная АВ (В – точка касания) и секущая, которая пересекает окружность в точках P и Q.

Докажите, что AB² = AP * AQ.

Через точку а проведены окружности касательная ак и секущая

Видео:Секущая и касательная. 9 класс.Скачать

Секущая и касательная. 9 класс.

Пожалуйста помогите решить очень нужно?

Пожалуйста помогите решить очень нужно!

Через точку А проведены касательная АВ ( В — точка касания) и секущая, которая пересекает окружность в точках С и Д.

Найдите СД если АВ = 4 см , АС = 2 см.

Через точку а проведены окружности касательная ак и секущая

Видео:Геометрия Из точки А, не лежащей на окружности, проведены к ней касательная и секущая. Расстояние отСкачать

Геометрия Из точки А, не лежащей на окружности, проведены к ней касательная и секущая. Расстояние от

Через точку А проведены касательная AB ( B — точка касания) и секущая, пересекающая окружность С и K так, что AC = 4см, AK = 16?

Через точку А проведены касательная AB ( B — точка касания) и секущая, пересекающая окружность С и K так, что AC = 4см, AK = 16.

Найдите длину AB.

Через точку а проведены окружности касательная ак и секущая

Видео:Всё про углы в окружности. Геометрия | МатематикаСкачать

Всё про углы в окружности. Геометрия  | Математика

Объясните, пожалуйста?

Через точку A проведены касательная AB.

(B – точка касания) и секущая, которая пересекает окружность в точках Eи F Найдите EF, если AB9, AF15.

Через точку а проведены окружности касательная ак и секущая

Видео:К окружности с центром в точке O проведены ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

К окружности с центром в точке O проведены ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

К окружности с центром в точке O проведена касательная AB (B — точка касания)?

К окружности с центром в точке O проведена касательная AB (B — точка касания).

Точка А находится на расстоянии 15 см от точки касания и на расстоянии 17 см от центра окружности.

Найдите длину окружности.

Через точку а проведены окружности касательная ак и секущая

Видео:Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.Скачать

Окружность №16 из ОГЭ. Свойства хорд, касательных, секущих.

Через точку А к окружности проведена касательная АВ(В — точка касания) и секущая, которая пересекает окружность в точках К и М?

Через точку А к окружности проведена касательная АВ(В — точка касания) и секущая, которая пересекает окружность в точках К и М.

Найдите АМ, если КМ : АК = 3 : 1 , АВ = 12 см.

Через точку а проведены окружности касательная ак и секущая

Видео:Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРАСкачать

Из точки A проведены две касательные к окружности ... | ОГЭ 2017 | ЗАДАНИЕ 10 | ШКОЛА ПИФАГОРА

Из точки А не лежащей на окружности, проведены к ней касательная и секущая?

Из точки А не лежащей на окружности, проведены к ней касательная и секущая.

Расстояние от точки А до точки касания равна 12 см, а до одной из точек перисичения секущейся окружностью равна 18 см .

Найдите радиус окружности если секущаяся удалена от ее центра на 3 см.

Через точку а проведены окружности касательная ак и секущая

Видео:ОГЭ математика. Задание 16. Окружность. Касательная.Скачать

ОГЭ математика. Задание 16. Окружность. Касательная.

Через точку А проведины касательная АВ ( В точка касания ) и секущая которая пересекает окружность в точках С и D?

Через точку А проведины касательная АВ ( В точка касания ) и секущая которая пересекает окружность в точках С и D.

Найдите СD, если АВ 4 см АС 2 см.

Через точку а проведены окружности касательная ак и секущая

Видео:Задание 26 Свойство касательной и секущей Подобные треугольникиСкачать

Задание 26 Свойство касательной и секущей  Подобные треугольники

Из точки А , не лежащей на окружности проведены к ней касательная и секущая?

Из точки А , не лежащей на окружности проведены к ней касательная и секущая.

Расстояние от точки А до точки касания равно 12 см, а до одной из точек пересечения секущей с окружностью равно 18 см.

Найти радиус окружности, если секущая удалена от ее центра на 3 см.

Вы перешли к вопросу Через точку А проведены к окружности касательная АМ ( М — точка касания) и секущая, которая пересекает окружность в точках К и Р (точка К лежит между точками А и Р)?. Он относится к категории Геометрия, для 5 — 9 классов. Здесь размещен ответ по заданным параметрам. Если этот вариант ответа не полностью вас удовлетворяет, то с помощью автоматического умного поиска можно найти другие вопросы по этой же теме, в категории Геометрия. В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей.

Через точку а проведены окружности касательная ак и секущая

10 задание : Угол САО = 40градусов Угол АСО = 40градусов В треугольнике 180 градусов УГЛЫ САО + АСО = 80 градусов 40 + 40 = 80 градусов Решение : 180 — 80 = 100 градусов УГОЛ СОА = 100 градусов Ответ : 100 градусов.

Через точку а проведены окружности касательная ак и секущая

Точка пересечения диагоналей прямоугольника является центром описанной вокруг него окружности. Диагональ (d) в данном случае складывается из двух радиусов описанной окружности. D = 2R = 50 Сумма квадратов диагоналей прямоугольника равна сумме квадр..

Касательная к окружности

Через точку а проведены окружности касательная ак и секущая

О чем эта статья:

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Через точку а проведены окружности касательная ак и секущая

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Через точку а проведены окружности касательная ак и секущая

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, взаимно перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

  • окружность с центральной точкой А;
  • прямая а — касательная к ней;
  • радиус АВ, проведенный к касательной.

Докажем, что касательная и радиус АВ взаимно перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Через точку а проведены окружности касательная ак и секущая

Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

∠АОС = 180° — ∠САО — ∠АСО = 180° — 90° — 28° = 62°

Поскольку вершина угла АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, АВ = 62°.

Через точку а проведены окружности касательная ак и секущая

Если провести две касательных к окружности из одной точки, лежащей вне этой окружности, то их отрезки от этой начальной точки до точки касания будут равны.

Докажем и это свойство на примере. Итак, у нас есть окружность с центром А, давайте проведем к ней две касательные из точки D. Обозначим эти прямые как ВD и CD . А теперь выясним, на самом ли деле BD = CD.

Для начала дополним наш рисунок, проведем еще одну прямую из точки D в центр окружности. Как видите, у нас получилось два треугольника: ABD и ACD . Поскольку мы уже знаем, что касательная и радиус к ней перпендикулярны, углы ABD и ACD должны быть равны 90°.

Через точку а проведены окружности касательная ак и секущая

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD (по катету и гипотенузе).. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

Для этой задачи вполне подойдет уже рассмотренный выше рисунок окружности с радиусами АВ и АC. Поскольку касательная ВD перпендикулярна радиусу АВ , у нас есть прямоугольный треугольник АВD. Зная длину его катета и гипотенузы, определим величину ∠BDA.

∠BDA = 30° (по свойству прямоугольного треугольника: угол, лежащий напротив катета, равного половине гипотенузы, составляет 30°).

Мы знаем, что прямая, проведенная из точки до центра окружности, делит угол между касательными, проведенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Через точку а проведены окружности касательная ак и секущая

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

∠МNК = (180° — ∠МКN) : 2 = (180° — 50°) : 2 = 65°

Через точку а проведены окружности касательная ак и секущая

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, лежащей вне окружности, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Через точку а проведены окружности касательная ак и секущая

Задача 1

Из точки М к окружности проведены две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МС = МВ — ВС = 16 — 12 = 4 (см)

МА 2 = МВ × МС = 16 х 4 = 64

Через точку а проведены окружности касательная ак и секущая

Задача 2

Дана окружность с радиусом 6 см. Из некой точки М к ней проведены две прямые — касательная МA и секущая МB . Известно, что прямая МB пересекает центр окружности O. При этом МB в 2 раза длиннее касательной МA . Требуется определить длину отрезка МO.

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

(у + R) 2 : 4 = (у + R) × (у — R)

Сократим уравнение на (у + R), так как эта величина не равна нулю, и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Через точку а проведены окружности касательная ак и секущая

Ответ: MO = 10 см.

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Через точку а проведены окружности касательная ак и секущая

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ АВ.

АВ = ∠АВС × 2 = 32° × 2 = 64°

Через точку а проведены окружности касательная ак и секущая

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

∠ОКМ = ∠ОМК = (180° — ∠КОМ) : 2

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

∠ОМК = (180° — ∠КОМ) : 2 = (180° — 168°) : 2 = 6°

Поделиться или сохранить к себе: