Вписанная окружность — это окружность, которая вписана
в геометрическую фигуру и касается всех его сторон.
Окружность, точно можно вписать в такие геометрические фигуры, как:
- Треугольник
- Выпуклый, правильный многоугольник
- Квадрат
- Равнобедренная трапеция
- Ромб
В четырехугольник, можно вписать окружность, 
только при условии, что суммы длин 
противоположных сторон равны.
Во все вышеперечисленные фигуры 
окружность, может быть вписана, только один раз.
Окружность невозможно вписать в прямоугольник 
и параллелограмм, так как окружность не будет 
соприкасаться со всеми сторонам этих фигур.
Геометрические фигуры, в которые вписана окружность, 
называются описанными около окружности.
Описанный треугольник — это треугольник, который описан
около окружности и все три его стороны соприкасаются с окружностью.
Описанный четырехугольник — это четырехугольник, который описан 
около окружности и все четыре его стороны соприкасаются с окружностью.
- Свойства вписанной окружности
- В треугольник
- В четырехугольник
- Примеры вписанной окружности
- Верные и неверные утверждения
- Окружность вписанная в угол
- Все формулы для радиуса вписанной окружности
- Радиус вписанной окружности в треугольник
- Радиус вписанной окружности в равносторонний треугольник
- Радиус вписанной окружности равнобедренный треугольник
- Радиус вписанной окружности
- 5 Comments
- 🎦 Видео
Свойства вписанной окружности
В треугольник
- В любой треугольник может быть вписана окружность, причем только один раз.
- Центр вписанной окружности — точка пересечения биссектрис треугольника.
- Вписанная окружность касается всех сторон треугольника.
- Площадь треугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c) cdot r = pr ]
p — полупериметр четырехугольника. 
r — радиус вписанной окружности четырехугольника.
окружность и любая из сторон треугольника.
перпендикуляры к любой точке касания.
треугольника на 3 пары равных отрезков.
Поэтому, расстояние между центрами этих окружностей можно найти с помощью формулы Эйлера:
с — расстояние между центрами вписанной и описанной окружностей треугольника. 
R — радиус описанной около треугольника. 
r — радиус вписанной окружности треугольника.
В четырехугольник
- Не во всякий четырехугольник можно вписать окружность.
- Если у четырехугольника суммы длин его противолежащих 
 сторон равны, то окружность, может быть, вписана (Теорема Пито).
- Центр вписанной окружности и середины двух 
 диагоналей лежат на одной прямой (Теорема Ньютона, прямая Ньютона).
- Точка пересечения биссектрис — это центр вписанной окружности.
- Точка касания — это точка, в которой соприкасается 
 окружность и любая из сторон четырехугольника.
- Площадь четырехугольника, в который вписана окружность, можно рассчитать по такой формуле:
[ S = frac(a+b+c+d)cdot r = pr ]
p — полупериметр четырехугольника. 
r — радиус вписанной окружности четырехугольника.
равноудалены от этой конца и начала этой стороны, то есть от его вершин.
Примеры вписанной окружности
- Треугольник 
- Четырехугольник 
- Многоугольник 
Примеры описанного четырехугольника: 
равнобедренная трапеция, ромб, квадрат.
Примеры описанного треугольника: 
равносторонний, равнобедренный, 
прямоугольный треугольники.
Верные и неверные утверждения
- Радиус вписанной окружности в треугольник и радиус вписанной 
 в четырехугольник вычисляется по одной и той же формуле. Верное утверждение.
- Любой параллелограмм можно вписать в окружность. Неверное утверждение.
- В любой четырехугольник можно вписать окружность. Неверное утверждение.
- В любой ромб можно вписать окружность. Верное утверждение.
- Центр вписанной окружности треугольника это точка пересечения биссектрис. Верное утверждение.
- Окружность вписанная в треугольник касается всех его сторон. Верное утверждение.
- Угол вписанный в окружность равен соответствующему центральному 
 углу опирающемуся на ту же дугу. Неверное утверждение.
- Радиус вписанной окружности в прямоугольный треугольник равен 
 половине разности суммы катетов и гипотенузы. Верное утверждение.
- Вписанные углы опирающиеся на одну и ту же хорду окружности равны. Неверное утверждение.
- Вписанная окружность в треугольник имеет в общем 
 три общие точки со всеми сторонами треугольника. Верное утверждение.
Окружность вписанная в угол
Окружность вписанная в угол — это окружность, которая
лежит внутри этого угла и касается его сторон.
Центр окружности, которая вписана в угол, 
расположен на биссектрисе этого угла.
К центру окружности вписанной в угол, можно провести, 
в общей сложности два перпендикуляра со смежных сторон.
Длина диаметра, радиуса, хорды, дуги вписанной окружности 
измеряется в км, м, см, мм и других единицах измерения.
Видео:Геометрия 9 класс. Радиус описанной и вписанной окружности треугольника. Формулы радиуса.Скачать

Все формулы для радиуса вписанной окружности
Видео:Формулы для радиуса окружности #shortsСкачать

Радиус вписанной окружности в треугольник
a , b , c — стороны треугольника
p — полупериметр, p=( a + b + c )/2
Формула радиуса вписанной окружности в треугольник ( r ):
Видео:Радиус описанной окружностиСкачать

Радиус вписанной окружности в равносторонний треугольник
a — сторона треугольника
r — радиус вписанной окружности
Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):
Видео:Вписанная и описанная окружность - от bezbotvyСкачать

Радиус вписанной окружности равнобедренный треугольник
1. Формулы радиуса вписанной окружности если известны: стороны и угол
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
α — угол при основании
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :
2. Формулы радиуса вписанной окружности если известны: сторона и высота
a — равные стороны равнобедренного треугольника
b — сторона ( основание)
h — высота
О — центр вписанной окружности
r — радиус вписанной окружности
Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :
Видео:Окружность вписана в равнобедренный треугольник. Найти её радиус.Скачать

Радиус вписанной окружности
Удобно, когда все формулы, по которым можно найти радиус вписанной в треугольник и в многоугольник окружности, размещены на одной странице.
Радиус вписанной в многоугольник окружности
Если в многоугольник можно вписать окружность, то формула для вычисления радиуса вписанной окружности:
где p — полупериметр, то есть полусумма длин всех сторон этого многоугольника.

Радиус вписанной в треугольник окружности
Формула для нахождения радиуса вписанной в треугольник окружности (верна для треугольника любого вида)
где p — полупериметр,
где a, b, c — стороны треугольника.
Радиус вписанной в прямоугольный треугольник окружности
  
где a и b — катеты, c — гипотенуза.
Радиус окружности, вписанной в правильный многоугольник
Формула радиуса вписанной в правильный многоугольник окружности
где a — сторона многоугольника, n — количество сторон.
Частные случаи — правильный (равносторонний) треугольник, правильный четырехугольник (квадрат) и правильный шестиугольник.
Радиус окружности, вписанной в правильный треугольник

В правильном треугольнике радиус вписанной окружности вдвое меньше радиуса описанной окружности:
Радиус окружности, вписанной в квадрат
Формула радиуса вписанной в квадрат окружности:
где a — сторона квадрата.
Радиус окружности, вписанной в правильный шестиугольник
Формула радиуса вписанной в правильный шестиугольник окружности:
где a — сторона правильного шестиугольника.
Для любого многоугольника центр вписанной окружности лежит в точке пересечения его биссектрис.
Видео:Формулы радиусов описанной и вписанной окружностей правильного многоугольника 2Скачать

5 Comments
Почему для квадрата не подходит формула S=pr
Вполне подходит. Полупериметр p=2а, r=a/2, откуда S=2a∙(a/2)=a².
Огромное спасибо этому сайту!Всё просто, понятно и правильно.
Радиус вписанной окружности это есть высота правильного многоугольника? Работает ли это для всех многоугольников?
🎦 Видео
Радиус вписанной окружности, формулу через площадь и полупериметрСкачать

Вписанные и описанные окружности. Вебинар | МатематикаСкачать

Шестнадцатое задание ОГЭ по математике (1) #огэ #огэ2023 #огэматематика #огэпоматематике #математикаСкачать

ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

Радиус описанной окружности трапецииСкачать

Найти радиус равнобедренного прямоугольного треугольника 3 задание проф. ЕГЭ по математикеСкачать

Правильные многоугольники. Геометрия 9 класс | Математика | TutorOnlineСкачать

найти радиус окружности, описанной вокруг треугольникаСкачать

Задание 16 ОГЭ по математике. Две окружности одна описана около квадрата, другая вписана в него.Скачать

РАДИУС вписанной окружности #математика #огэ #огэматематика #данирСкачать

Сможешь найти радиус окружности? Окружность, вписанная в прямоугольный треугольникСкачать

ЕГЭ профиль #3 / Радиус описанной окружности / Равносторонний треугольник / решу егэСкачать

Задача 6 №27624 ЕГЭ по математике. Урок 71Скачать

СТОРОНА КВАДРАТА через РАДИУС вписанной и описанной окружностейСкачать


























